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Preface

The purpose for the course/book is to help the student that is about to transi-
tion from the traditional calculative courses, such as the calculus sequence, and
begin their journey into the more abstract mathematics where proofs become
prevalent.

Most students that would venture this far into the mathematics major have
been enjoying these calculative classes, enjoying the comfort of an algorithm.
Perhaps they were the student that loved Calculus III, where they pictured
three dimensional shapes and loved the visualization. Whatever it was I have
seen far too many students then reach the more ”rigorous” classes and loose
interest, change majors or just stop enjoying mathematics. In my opinion this
is just a shame! And this text tries to give students an algorithm to hold on
to as they move deeper and deeper into the muddle.

This transition from calculative to proving is why I choose instead of a
combinatorial based course, such as discrete mathematics, we take our trip in
the calculus student’s favorite past time of numbers. So the student can rest
assured that numbers are at the forefront of this course, even though we are
exploring new and exciting paths where numbers may not take a leading role.

To the Teacher:
I don’t know how you stumbled upon this book, but if you are reading this

you are most likely deciding if you should adopt this textbook in your class.
I’ll save you the work: DO IT!

What? Are you still reading? Ohhh... you want more of an explanation.
Well, first this book is free, stop making your students pay for expensive books!

Still here I see... You are more discerning. Well if you want to know if my
exercises are of your taste, I assure you I broke no molds in the exercises. In
this textbook Students will prove the traditional even, odd, divides, etc.

Wait... you are still reading... ok people might ask what you are doing...
quick giggle and say:

”that’s a funny tiktok”
That was close... didn’t want your colleagues walking by to think you

actually cared about student learning... so you want to know if this is different
than those other introduction to proofs books... Well let me tell you a story...

I’ve had nights out at conferences with fellow mathematicians and have
listened to these brilliant mathematicians lament on not understanding the
purpose of a course on proof writing. And when these pillars of our mathemat-
ics community ever taught such a class it was with the outlook that someone
learned to write proofs by seeing a lot of proofs. So the instructor would show
off some proofs never really motivating why or how one would move from one
line to the next then grab some questions from the exercise section and just
hope their students would figure it out.

By my flippant description of this interaction you probably put together
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that I don’t feel this way. I feel like students can be led on the proving journey
the same as they are led on their calculative journey. Just more care should
be taken. I have attempted to create a text that allows the instructor to just
”follow the chapters” in their present order and hopefully give the student’s
this journey!

Ok... but you are still reading... Yes, you may be asking why are my
examples so ”basic” I never once mention derivative like the popular texts in
this subject by the big publishers... well this is because I save that for analysis...
in this course I am just trying to introduce proving not introduce topics that
cannot be picked up (almost) immediately. While these pithy examples can
mislead the students that are still trying to ”just get the answer” it is my hope
that the treatment of these examples is what sets it apart.

Now, if you are curious of my ethos/outlook on proofs or that of advanced/
abstract mathematics to see if it aligns with yours and you have yet been
scared away by this preface, then I can only assume that you either know me
personally and are wondering if this rampant rambling will ever end or did
he just blindly type on a keyboard and expect no one to ever read this. But
perhaps brave traveler you are like me and are actually wondering...

How do you teach someone how to prove?

If you continue to read you will see that I wax poetic about undefined terms
and tracing back conclusions to our assumptions, axioms and definitions... if
this is all true then why not just teach a student to prove with a course in
geometry? Or if this approach is too archaic start with a discrete math course
where you can introduce them to fun brand new concepts like graphs and latin
squares where they can start from first principles?

These are both amazing thoughts and in my personal opinion amazing
classes, yet to go a little deeper than I had earlier in this preface, to me a
discrete math course can take a lot of time playing with and learning these
new concepts and the proofs are a side-kick to the combinatorics, which is
awesome to the combinatorics lover, and this indeed can often soften the blow
between the calculus and the notorious math major courses, but only slightly
as the student still feels lost in their algebra and analysis and what happens a
lot is the student shy’s away from these subjects and clings to combinatorics
where they first got those good grades or where they first felt smart. Yet, in
this weird class which feels like it teaches them nothing new, its real goal is to
make them look at the things they already knew differently, by giving them
their college algebra to play with not only for a safety blanket ()as I will quite
often refer to it) but in hopes to give them the space and time needed to see
the deepness of the pond of proofs they are now peering into.

But... of course the critical reader, as I am sure you are, combined with
years of mathematical knowledge, as I also assume you have, might just say:
”wait isn’t this just a baby’s first number theory course?”

To which I scoff, a scoff more deeply than I have ever scoffed...
If you have read this far, I’m sure you have already looked me up... but

I’m definetly not a number theorist... sorry in advance!



Contents

Preface iv

0 What is a Proof? 1

0.1 In the Beginning We Had Shapes . . . . . . . . . . . . 1
0.2 Undefined Terms . . . . . . . . . . . . . . . . . . 1
0.3 Axioms . . . . . . . . . . . . . . . . . . . . . 2
0.4 Definitions . . . . . . . . . . . . . . . . . . . . 2
0.5 Proofs . . . . . . . . . . . . . . . . . . . . . . 2
0.6 Just Check a Bunch . . . . . . . . . . . . . . . . . 3
0.7 Obviously . . . . . . . . . . . . . . . . . . . . 3

1 Introduction to Logic 4

1.1 Propositions and Connectives . . . . . . . . . . . . . 4
1.2 Propositions and Negation . . . . . . . . . . . . . . 4
1.3 Connectives and Compound Propositions . . . . . . . . . 6
1.4 Conditionals and Biconditionals . . . . . . . . . . . . 7
1.5 Conditionals. . . . . . . . . . . . . . . . . . . . 7
1.6 Biconditionals . . . . . . . . . . . . . . . . . . . 8
1.7 Truth Tables . . . . . . . . . . . . . . . . . . . 9
1.8 Basic Tables. . . . . . . . . . . . . . . . . . . . 9
1.9 More Complicated Tables . . . . . . . . . . . . . . . 10
1.10 Tautologies and Contradictions . . . . . . . . . . . . . 12
1.11 Logical Equivalences. . . . . . . . . . . . . . . . . 13
1.12 What is an equivalence? . . . . . . . . . . . . . . . 13
1.13 Some Important Equivalences . . . . . . . . . . . . . 14
1.14 The Algebra of Logic . . . . . . . . . . . . . . . . 16
1.15 Quantifiers . . . . . . . . . . . . . . . . . . . . 17
1.16 The Universe of Discourse. . . . . . . . . . . . . . . 17
1.17 Common Universes . . . . . . . . . . . . . . . . . 18
1.18 Truth Sets and Predicate Forms . . . . . . . . . . . . 18
1.19 The Existential Quantifier. . . . . . . . . . . . . . . 19
1.20 The Universal Quantifier . . . . . . . . . . . . . . . 20
1.21 Negating Quantifiers. . . . . . . . . . . . . . . . . 21
1.22 Unique Existence . . . . . . . . . . . . . . . . . . 21
1.23 More Examples . . . . . . . . . . . . . . . . . . 22
1.24 Exercises . . . . . . . . . . . . . . . . . . . . . 22

vi



CONTENTS vii

2 How to Argue 25

2.1 Arguments . . . . . . . . . . . . . . . . . . . . 25
2.2 Validness . . . . . . . . . . . . . . . . . . . . . 25
2.3 Arguments with Propositional Forms. . . . . . . . . . . 26
2.4 The Bad and the Ugly . . . . . . . . . . . . . . . . 29
2.5 Arguments with Quantifiers . . . . . . . . . . . . . . 30
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . 31

3 Direct Proofs 33

3.1 Where We Start . . . . . . . . . . . . . . . . . . 33
3.2 What We Can Assume . . . . . . . . . . . . . . . . 33
3.3 Our Terms . . . . . . . . . . . . . . . . . . . . 34
3.4 Direct Proof. . . . . . . . . . . . . . . . . . . . 34
3.5 What is a Direct Proof? . . . . . . . . . . . . . . . 35
3.6 Does it Work? . . . . . . . . . . . . . . . . . . . 35
3.7 Our First Proof . . . . . . . . . . . . . . . . . . 36
3.8 The Beginning . . . . . . . . . . . . . . . . . . . 36
3.9 The Muddle . . . . . . . . . . . . . . . . . . . . 36
3.10 The End . . . . . . . . . . . . . . . . . . . . . 37
3.11 More Direct Proof Examples . . . . . . . . . . . . . . 38
3.12 Direct Proof Example 2 . . . . . . . . . . . . . . . 38
3.13 The Beginning . . . . . . . . . . . . . . . . . . . 38
3.14 The Muddle . . . . . . . . . . . . . . . . . . . . 38
3.15 The End . . . . . . . . . . . . . . . . . . . . . 39
3.16 Direct Proof Example 3 . . . . . . . . . . . . . . . 40
3.17 The Beginning . . . . . . . . . . . . . . . . . . . 40
3.18 The Muddle . . . . . . . . . . . . . . . . . . . . 40
3.19 The End . . . . . . . . . . . . . . . . . . . . . 41
3.20 Direct Proof Example 4 . . . . . . . . . . . . . . . 41
3.21 The Beginning . . . . . . . . . . . . . . . . . . . 42
3.22 The Muddle . . . . . . . . . . . . . . . . . . . . 42
3.23 The End . . . . . . . . . . . . . . . . . . . . . 42
3.24 Direct Proof Example 5 . . . . . . . . . . . . . . . 43
3.25 The Beginning . . . . . . . . . . . . . . . . . . . 43
3.26 The Muddle . . . . . . . . . . . . . . . . . . . . 43
3.27 The End . . . . . . . . . . . . . . . . . . . . . 43
3.28 Proofs with Conjunctions and Disjunctions . . . . . . . . 44
3.29 More Examples . . . . . . . . . . . . . . . . . . 47
3.30 Exercises . . . . . . . . . . . . . . . . . . . . . 49

4 Indirect Proofs 50

4.1 Our Assumptions . . . . . . . . . . . . . . . . . . 50
4.2 Contrapositive . . . . . . . . . . . . . . . . . . . 50
4.3 What is a Proof by Contraposition? . . . . . . . . . . . 51
4.4 First Example of Contrapositive . . . . . . . . . . . . 51
4.5 The Beginning . . . . . . . . . . . . . . . . . . . 52
4.6 The Muddle . . . . . . . . . . . . . . . . . . . . 52
4.7 The End . . . . . . . . . . . . . . . . . . . . . 53
4.8 Contradiction . . . . . . . . . . . . . . . . . . . 53
4.9 What is a contradiction? . . . . . . . . . . . . . . . 54
4.10 First Example of Proof by Contradiction . . . . . . . . . 55
4.11 The Beginning . . . . . . . . . . . . . . . . . . . 55



CONTENTS viii

4.12 The Muddle . . . . . . . . . . . . . . . . . . . . 55
4.13 The End . . . . . . . . . . . . . . . . . . . . . 56
4.14

√
2 is Irrational . . . . . . . . . . . . . . . . . . 57

4.15 The Beginning . . . . . . . . . . . . . . . . . . . 58
4.16 The Muddle . . . . . . . . . . . . . . . . . . . . 58
4.17 The End . . . . . . . . . . . . . . . . . . . . . 58
4.18 Biconditional Proofs . . . . . . . . . . . . . . . . . 59
4.19 Proof by Exhaustion. . . . . . . . . . . . . . . . . 62
4.20 What are Cases? . . . . . . . . . . . . . . . . . . 62
4.21 Exhaustive Examples . . . . . . . . . . . . . . . . 63
4.22 Existential Proofs. . . . . . . . . . . . . . . . . . 65
4.23 Exercises . . . . . . . . . . . . . . . . . . . . . 67

5 Set Theory 69

5.1 What is a Set? . . . . . . . . . . . . . . . . . . . 69
5.2 Set Builder Notation . . . . . . . . . . . . . . . . 71
5.3 Comparing and Combining Sets . . . . . . . . . . . . 72
5.4 Venn Diagrams and Logic of Sets . . . . . . . . . . . . 75
5.5 Venn Diagrams. . . . . . . . . . . . . . . . . . . 76
5.6 The Logic of Sets . . . . . . . . . . . . . . . . . . 80
5.7 First Proofs with Sets . . . . . . . . . . . . . . . . 82
5.8 The First Proof . . . . . . . . . . . . . . . . . . 83
5.9 The Beginning . . . . . . . . . . . . . . . . . . . 83
5.10 The Muddle . . . . . . . . . . . . . . . . . . . . 83
5.11 The End . . . . . . . . . . . . . . . . . . . . . 83
5.12 More Examples . . . . . . . . . . . . . . . . . . 84
5.13 Power Set . . . . . . . . . . . . . . . . . . . . 87
5.14 First Proof . . . . . . . . . . . . . . . . . . . . 88
5.15 Proof of: A ⊆ B =⇒ P(A) ⊆ P(B) . . . . . . . . . . 88
5.16 The Beginning . . . . . . . . . . . . . . . . . . . 89
5.17 The Muddle . . . . . . . . . . . . . . . . . . . . 89
5.18 The End . . . . . . . . . . . . . . . . . . . . . 89
5.19 Proof of: P(A) ⊆ P(B) =⇒ A ⊆ B . . . . . . . . . . 89
5.20 The Beginning . . . . . . . . . . . . . . . . . . . 90
5.21 The Muddle . . . . . . . . . . . . . . . . . . . . 90
5.22 The End . . . . . . . . . . . . . . . . . . . . . 90
5.23 The Natural Numbers . . . . . . . . . . . . . . . . 91
5.24 Cross Product . . . . . . . . . . . . . . . . . . . 91
5.25 Families . . . . . . . . . . . . . . . . . . . . . 94
5.26 Exercises . . . . . . . . . . . . . . . . . . . . .101

6 Principle of Mathematical Induction 103

6.1 What We Will Use . . . . . . . . . . . . . . . . .103
6.2 Summation . . . . . . . . . . . . . . . . . . . .103
6.3 Product . . . . . . . . . . . . . . . . . . . . .104
6.4 Factorial . . . . . . . . . . . . . . . . . . . . .105
6.5 Introduction to Induction . . . . . . . . . . . . . . .106
6.6 First Proof with Induction . . . . . . . . . . . . . .107
6.7 The Beginning . . . . . . . . . . . . . . . . . . .107
6.8 The Muddle . . . . . . . . . . . . . . . . . . . .108
6.9 The End . . . . . . . . . . . . . . . . . . . . .108
6.10 Basic Induciton Examples . . . . . . . . . . . . . . .108



CONTENTS ix

6.11 The Fibonacci Sequence . . . . . . . . . . . . . . .116
6.12 Well-Ordering Principle . . . . . . . . . . . . . . .120
6.13 Exercises . . . . . . . . . . . . . . . . . . . . .122

7 Relations 124

7.1 What is a Relation? . . . . . . . . . . . . . . . . .124
7.2 New Relations From Old . . . . . . . . . . . . . . .128
7.3 Equivalence Relations . . . . . . . . . . . . . . . .132
7.4 Partitions . . . . . . . . . . . . . . . . . . . .141
7.5 Functions. . . . . . . . . . . . . . . . . . . . .146
7.6 Bijections. . . . . . . . . . . . . . . . . . . . .151
7.7 Exercises . . . . . . . . . . . . . . . . . . . . .156

Back Matter

Index 158



Chapter 0

What is a Proof?

We begin our journey at the beginning...
For the instructor: this chapter can be safely skipped!

0.1 In the Beginning We Had Shapes
As was true in ancient Athens, seems to ring true still in our sacred halls of
academia, even more true after Bourbaki came in with their wrecking ball, and
that is:

ΑΓΕΩΜΕΤΡΗΤΟΣ ΜΗΔΕΙΣ ΕΙΣΙΤΩ
Of course if that was ”all Greek to you,” do not fret fair Caesar, that was

simply the author paying tribute to those that came before...
The history of math books are littered with reference to tax collectors and

assessors, but besides the lousy adjectives that we call numbers we have had
Geometry!

0.2 Undefined Terms
It is our intention to be able to agree, beyond a shadow of doubt, on the truth
of a litany of statements. These agreements are called proofs. As one first
ventures on this journey they often take many things for granted, perhaps
the most important is that we have a mutual agreement/understanding of the
words and symbols being used in the discourse. This is easier said than done,
as when one is defining a word they must of course use more words, then those
words would of course need even more words to define them... and so on....
and so forth.

When would this pattern end? To ever have a discussion that went forward
we would eventually need to stop. The stopping words, are commonly referred
to as undefined terms. For example, the almost universally agreed upon
undefined terms for geometry are: point, line, and incident.
Surprisingly, as Aristotle had already explained the necessity of undefined

terms, Euclid did attempt to define the words such as point and line. Luckily,
this did not effect his discourse, as the definitions were vague and used at best
to visualize a geometry, rather than fix them with an immutable meaning.

1



CHAPTER 0. WHAT IS A PROOF? 2

0.3 Axioms
After we have all agreed on the undefined terms, we would then need to set
some ground rules. These rules that our new undefined terms must follow are
known as axioms. Using our geometry example from above, one common
axiom of euclidean geometry is:

1. For any two points there exists a line incident to both.

The etymology of the word axiom comes from a Greek word meaning ”to
require.” I find this apropos as axioms are required - otherwise we would have
no footing to begin a discourse.

0.4 Definitions
Now once we have our undefined terms and axioms, we begin building perhaps
the most important part of all proofs: the definitions. One of the major
take-aways from this course is that I would like the student to understand
the importance of a definition. You can only prove something is true when you
know that thing, when you know that thing’s definition.

0.5 Proofs
There are two interpretations of what has been presented before you. One,
hopefully how it has been presented here, is that there is no other way one
could argue/debate without this structure. Otherwise, a party could simply
keep going backwards and backwards with no assumptions/axioms to back stop
the debate.

The other point of view, perhaps most popular in textbooks, is to call
this approach deductive reasoning, and draw contrast to that of induc-
tive reasoning, somehow pitting the two against each other. The epitome of
physicists versus mathematicians - even applied mathematicians vs theoretical
mathematicians.

The differences attempting to be drawn between the world we have just set
forward and that of collecting data and observing specific instances or phenom-
ena, striving to form a theory, a model, that reveals patterns or relationships
among quantities and structures in nature. This process labeled as inductive
reasoning, drawing general conclusions from particular cases/patterns. Which
is supposed to be in stark opposition to deductive reasoning, where we draw
conclusions based on statements accepted as true, our axioms and undefined
terms. After which proofs are built, to ensure that conclusions are drawn
logically to arrive at truth. Yet, it is impossible to separate these. It is the
phenomena of our surrounding universe that Euclid yearned to define and de-
scribe in his geometries.

Yet, do not take these abstractions as something to be taken for granted.
To quote Russell, ”It is only at a high stage of civilization that we could take
this series as a starting point”. Or perhaps to quote another, ”undoubtedly it
took a million years to get the taste of an oyster just right”.

In this class we will not explore the amazing world of tracing back every
single conclusion to an undefined term or axiom, but instead we will start with
A LOT of assumptions, assumptions students at this stage are used to making,
namely ”college algebra.” Then later we will use fewer and fewer assumptions,
only dipping our toe in the endless pond of abstraction.
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0.6 Just Check a Bunch
Students are probably most familiar with the natural and social sciences, where
theories are tested by comparing what happens in experiments to what was
predicted, and checking that the results stay the same when the experiment
is repeated. In math, the goal is often to figure out whether a statement is
always true. Even if a statement works for a lot of examples, there’s still the
chance that one example we haven’t tested could show it’s false. For example,
you might notice that the expression
This example is inspired by an example that I absolutely fell in love with. I

first came across the inspirational example in Smith, Douglas, Maurice Eggen,
and Richard St Andre. ”A transition to advanced mathematics.” (1983).

x2 − 7x+ 53

produces a prime number for many values of x. The diligent student will
check that for the first 10, 20, 30 or even 40 positive integers, when we substi-
tute our number for x, we arrive at a prime number such as

(4)2 − 7(4) + 53 = 41

which is prime! If this hard working student were to check with other
numbers like 41, 42, and 43 they would also discover prime numbers as the
solution.

However, this is not a conclusive proof, as it fails for x = 44, where the
result is 1681, which is actually a square, that is it factors as 41× 41.

I know for almost all of you, at least at one time in your life, it is enticing
to just try specific examples. As well, it is undeniable that exploring these
examples can, at times, offer valuable insights into mathematical concepts and
relationships, it is not sufficient as a proof unless every possible case can be
examined.

0.7 Obviously
When writing a proof a challenging task is to decipher what is obvious. The
rule I make in my class is that you should write so that ANYONE in the class
would have no questions as to how you got to the next step.

Just to make things extra fun (and by fun, I mean slightly confusing), there
will be moments when I’m pretty sure every single one of you will look at a
step and think, ”Well, obviously!” But then the next homework assignment
will be to prove that very statement.

There will be moments where you are absolutely NOT allowed to just say,
”Oh, that’s obvious!” Furthermore, I will be very clear (especially at the be-
ginning) on what you are allowed to take as given/obvious and everything else
must be proven!



Chapter 1

Introduction to Logic

In this chapter we will see the foundation of proofs, namely propositional logic.
Logic has become so prevalent in an invisible way as it is the underlying lan-
guage of the technology that has began running our lives.

In more of a historical context logic was the primary tool for the original
philosophers and debaters. The study of propositional logic teaches you how
to argue! It is in simpliest terms the study of truth.

With that said, in propositional logic we have only 2 options:
True or False
The quintessential 1 or 0 of computers.

Note 1.0.1 This chapter is quite verbose and the student has time early on in
the course to find great algrorithms like truth tables, but these quick and low
hanging algorithms have the danger of distracting the student from actually
learning this bedrock portion of proofs, and treating this like their calculus class
where they only listen when an example of algorithm is put on the jukebox.

1.1 Propositions and Connectives
I have heard many students say things like ”I’m a math major not an English
major.” This sentiment becomes further and further from the truth as you
continue your journey in the major of mathematics. For one, you begin to see
mathematics as a language itself, with its own grammar and rules. And in
particular in this course, you begin to only write paragraphs in exchange for
the string of symbols and numbers from your calculus courses. As we begin
our journey into abstract mathematics we need to do the exact opposite of this
sentiment, and instead examine how language works, specifically how language
handles truth.

In English, as in many languages, there are many types of sentences - some
more complicated than others. We will now be concerning ourselves with if a
sentence is true. This is the hallmark of proving: only writing sentences that
are true, so that our conclusions are then true.

1.2 Propositions and Negation
Even though many statements/sentences can be true or can be false, it doesn’t
make sense to say that any sentence that you could write is true or not. For
example there are questions such as ”Where is my phone?” or exclamations

4
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like ”Oh no!” Both of these examples are indeed complete sentences, as in,
they express a complete thought, but are neither true nor false.
Definition 1.2.1 Proposition. A proposition is a sentence that can take
only one of two values: truth or false. ♢
Example 1.2.2 Some Examples of Propostions. The following are ex-
amples of propositions:

(A) 2 + 5 = 4

(B) The gazel will become the only living animal on earth by the year 2525.

(C) Galileo Galilei had bacon on his eleventh birthday.

□
Some propositions, like (A) in Example 1.2.2, p. 5 have clear truth values,

that is, we can easily determine if the statement is either True or False (but
not both). Perhaps, to untangle the last sentence, it is clear that (A) in
Example 1.2.2, p. 5 is False.

Yet, the remaining (B) and (C) in Example 1.2.2, p. 5, cannot be easily
determined if they are True or False (unless of course you are reading this after
2525) but nonetheless they are either True or False (and not both) whether or
not we can determine which one.
Example 1.2.3 Some Examples of Sentences that are not Proposi-
tions. The following are sentences that are NOT propositions:

(A) Stop!

(B) She has my phone.

(C) x+ 2 = 4

(D) This sentence is false.

□
For examples (B) and (C) in Example 1.2.3, p. 5 are not propositions be-

cause (B) depends on who ”She” is to determine its truth value, while in (C)
it depends on what ”x” is, for example when x is 2 it is True, but when x is
3 it is False. Example (A) from Example 1.2.3, p. 5 is an exclamation and is
neither True nor False. Finally, (D) from Example 1.2.3, p. 5 is known as a
paradox. If the statement “This sentence is false” is true, then by its meaning
it must be false. On the other hand, if the given statement is false, then what
it claims is false, so it must be true.

In our journey of learning propositional logic we will often find it necessary
to discuss arbitrary propositions. To do so we will try and use capital letters
such as: P , Q, R, S, and T .

There are many ways to create new propositions from old ones. Our first
tool to do just that is the logical negation.
Definition 1.2.4 Negation. Given a proposition P ,The negation of P ,
denoted ∼ P , is the proposition

”not P”
∼ P is true exactly when P is false. ♢
It is noteworthy that the symbol ¬ can be found in many texts for the

negation as well. The negation is simply the opposite of the proposition.
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Example 1.2.5 Some Negation Examples.

(A) P : The sky is purple.
∼ P : The sky is not purple.

(B) P : It is raining right now at SMWC.
∼ P : It is not raining right now at SMWC.

□

1.3 Connectives and Compound Propositions
In Example 1.2.2, p. 5 the propositions are all simple or atomic in the sense
that they do not have any other propositions as components. Compound
propositions can be formed by using connective words, connecting more than
one proposition.
Definition 1.3.1 Conjunction. Given propositions P and Q,The conjunc-
tion of P and Q, denoted P ∧Q, is the proposition:

”P and Q”
P ∧Q is true exactly when both P and Q are true! ♢
We will see throughout this course that many different words in English can

be used for our propositions with the same meaning. For example, but, while,
and although are usually translated symbolically with the conjunction connec-
tive. An example of this, using the propositions from (A) in Example 1.3.2,
p. 6, is we could write ”It is not raining outside but I do have my umbrella”
symbolically as ”(∼ P ) ∧Q.”

Example 1.3.2 Some Conjunction Examples.

(A) P : ”It is raining outside.”
Q : ”I have an umbrella.”
P ∧Q : It is raining outside and I have an umbrella.

(B) P : ”Leonardo di ser Piero da Vinci was born in Italy.”
Q: ”π

2 is rational.”
P ∧ Q: ”Leonardo di ser Piero da Vinci was born in Italy and π

2 is
rational.”

(C) P : ”DNA stores information about how to build cells”
Q: ”Archaea are prokaryotes”
P ∧ Q: ”DNA stores information about how to build cells and Archaea
are prokaryotes”

□
Definition 1.3.3 Disjunction. Given propositions P and Q,The disjunc-
tion of P and Q, denoted P ∨Q, is the proposition:

”P or Q”
P ∨Q is true exactly when at least one of P or Q are true. ♢
The logical disjunction is often referred to as the inclusive or, as it is still

true when both propositions are true. In English we often assume the use of the
exclusive or, that is, when we use the word or we most often mean only one
of two choices. For example ”would you like chicken or steak.” When someone
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says this to you, you know immediately they do not mean that you can have
both chicken and steak, that is not the case for the logical disjunction.
Example 1.3.4 Some Disjunction Examples.

(A) P : 10 is a composite.
Q: 4 is a prime.
P ∨Q: 10 is a composite or 4 is prime.

(B) P : ”I will do my homework.”
Q : ”I will watch Star Wars.”
P ∨Q : ”I will do my homework or I will watch Star Wars.”

(C) P : ”I will do the dishes tonight.”
Q : ”I am cooking tonight.”
P ∨Q : ”I will do the dishes tonight or I am cooking tonight.”

□

1.4 Conditionals and Biconditionals
In the last section we saw a few connectives. Using only these connectives is
possible and is all you need for a complete logical system, but it ignores an
important decree used quite often in logic/debate/mathematics. That is, the
implication.

1.5 Conditionals
Definition 1.5.1 Conditional. Given the propositions P and Q,the condi-
tional statement P =⇒ Q is the proposition

”If P then Q”
Proposition P is called the antecedent and Q is the consequent.
The conditional statement P =⇒ Q is true exactly when P is false or Q

is true. ♢
There are many ways of translating the conditional to English statements,

which we will in the next table, but perhaps the most popular is implies, that
is, ”P implies Q.”

P =⇒ Q: Example:

If P then Q
If I am cooking tonight then I

will do dishes

P implies Q
The water temperature is 100◦C

implies the water is boiling

P is sufficient for Q
The water temperature is 100◦C

is sufficient for the water is boiling

P only if Q I am cooking tonight only if I
will do the dishes

Q, if P The water is boiling if the water
temperature is 100◦C

Q whenever P
The water is boiling whenever

the water temperature is 100◦C
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Q is necessary for P
The water is boiling is necessary

for the water temperature is 100◦C

Q when P
The water is boiling when the

water temperature is 100◦C

Since P we get Q
Since we have seen that 4 is even

we get that 2 divides 4.
I have found the truth values of this connective to be the most challenging

for students. To help, I suggest the student always think of the next example.
Example 1.5.2 The Lying Politician. P : I am elected

Q: I will lower taxes
P =⇒ Q: If I am elected then I will lower taxes.
So when is politician lying?
There are a couple of cases:

1. The politician is indeed elected:

(a) The politician lowers taxes!
The politician is not lying!

(b) The politician does not lower taxes
The politician is lying!

2. The politician is not elected:

(a) The politician works hard with community leaders and lobbies to
get taxes lowered
The politician is not lying!

(b) The politician sits on their couch all day eating Fruit Loops, and
taxes are not lowered
The politician is not lying!

□
Students seem to have the hardest time seeing that when the politician is

not elected, there is no obligation to do anything, and hence the politician is
not lying!

1.6 Biconditionals
Definition 1.6.1 Biconditional. Given the propositions P and Q,the bi-
conditional statement P ⇐⇒ Q is the proposition

”P if and only if Q”
The biconditional statement P ⇐⇒ Q is true exactly when P and Q have

the same truth value. ♢
Instead of writing ”if and only if” we will often elect to only type ”iff.”

Just as with the implication, the biconditional has many English translations:
P ⇐⇒ Q: Example:

P if and only if Q I will buy dinner if and only if
you buy the movie tickets

P if, but only if Q The water temperature is 100◦C
if, but only if the water is boiling

P is equivalent to Q
The water temperature is 100◦C

is sufficient for the water is boiling
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P is necessary and sufficient for
Q

I am cooking tonight is neces-
sary and sufficient for you to do the
dishes

It is this biconditional that I believe many students hear when they hear
the phrase: ”If I am elected then I will lower taxes.” When indeed they mean
”Taxes will be lowered if, but only if I am elected.”

1.7 Truth Tables
So far we have always looked at actual sentences, even when a letter like P
was introduced, it was immediately followed by an actual statement.

Recall, our journey is to show/find the truth of statements, most often
referred to as proofs. In this journey we will need to use propositions which we
already know the truth value of and combine them to arrive at new propositions
which we want to be true. To be able to do this we need to be able to know
how combining different propositions with our connectives affect their truth
value (truthiness). To keep track of this, we now introduce truth tables.

1.8 Basic Tables
In a truth table, we take arbitrary propositions indicated by letters, such as
P , Q, R, S, and T , and consider all the cases of each being either True (T) or
False (F). We then explore how combining them with connectives changes the
truth value of the compound propositions.

We will call these arbitrary propositions/compound propositions, proposi-
tional forms. These propositional forms do not have a truth value. Instead,
each form has a list of truth values that depend on the values assigned to its
components. This list is displayed by presenting all possible combinations for
the truth values of its components in a truth table.

To do this we will need to first be able to collect all the combinations
of truth values of the basic components of a compound proposition. So for
example, if the compound proposition has two components, lets name them P
and Q, then all combinations are:

P Q

T T
T F
F T
F F

Figure 1.8.1
Now to see everything together, we will begin with a couple of simple ones,

first the conjunction (P ∧Q). Since the conjunction involves two components
(P and Q) their truth tables must include all combinations of their two truth
values, just as collected above in figure Figure 1.8.1, p. 9.

P Q P ∧Q

T T T
T F F
F T F
F F F

Figure 1.8.2



CHAPTER 1. INTRODUCTION TO LOGIC 10

Next, the disjunction (P ∨Q). Since the disjunction also only involves two
components (P and Q) their truth tables must again include all combinations
of their two truth values, just as collected above in Figure 1.8.1, p. 9.

P Q P ∨Q

T T T
T F T
F T T
F F F

Figure 1.8.3
Next, we will see the truth table for the negation, ∼ P . Since the negation

only involves one component (P ) we simply need the two truth values that P
can obtain.

P ∼ P

T F
F T

Figure 1.8.4
Now, we see the implication, P =⇒ Q in action. Again, this has two

components so we must list them all.

P Q P =⇒ Q

T T T
T F F
F T T
F F T

Figure 1.8.5

P Q ∼ P (∼ P ) =⇒ Q

T T F T
T F F T
F T T T
F F T F

Figure 1.8.6
The biconditional is an important one, which we use as the word equivalent.

This table shows us that this is an apt word use.

P Q P ⇐⇒ Q

T T T
T F F
F T F
F F T

Figure 1.8.7

1.9 More Complicated Tables
Now let’s dive into more complicated examples. As our examples get more
complicated, I suggest that the student take time to break-it-down and create
extra columns that are themselves components of compound propositions. A
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simple example of this is the compound proposition:

(∼ P ) =⇒ Q

This example has only two basic components, namely P and Q. Yet, notice
that the antecedent is ∼ P , this is what I suggest you create a new column for.
Namely, after you make your P column and your Q column, and before you
make your final column, add a ∼ P column

P Q ∼ P (∼ P ) =⇒ Q

T T F
T F F
F T T
F F T

Figure 1.9.1
Next, you can complete the table by only looking at the ∼ P and Q columns

as they are the only ones now involved in the compound proposition (∼ P ) =⇒
Q

P Q ∼ P (∼ P ) =⇒ Q

T T F T
T F F T
F T T T
F F T F

Figure 1.9.2
For an even more complicated example consider:

(P ∨Q) ∧ (∼ (P ∧Q))

This has two major pieces, namely P ∨Q as well as P ∧Q. Again, the atomic
pieces are P and Q so we begin with our standard two columns, then we include
a column for each of these major pieces:

P Q P ∨Q P ∧Q

T T T T
T F T F
F T T F
F F F F

Figure 1.9.3
Now recall that we are trying to build a table for

(P ∨Q) ∧ (∼ (P ∧Q)).

The next major piece we see is ∼ (P ∧Q)

P Q P ∨Q P ∧Q ∼ (P ∧Q)

T T T T F
T F T F T
F T T F T
F F F F T

Figure 1.9.4
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Finally, we can simply look at the cells P ∨Q as well as ∼ (P ∧Q) to finish
our table for:

(P ∨Q) ∧ [∼ (P ∧Q)]

P Q P ∨Q P ∧Q ∼ (P ∧Q) (P ∨Q) ∧ [∼ (P ∧Q)]

T T T T F F
T F T F T T
F T T F T T
F F F F T F

Figure 1.9.5
From now on we will only show the finished tables.
Another way of making a more complicated table is to have a compound

proposition which involves three atomic propositions: P , Q, and R. In this
case all of the possible combinations of true and false are the following:

P Q R

T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

Figure 1.9.6
Now we can do an example like

(P ∧R) =⇒ Q

P Q R P ∧R (P ∧R) =⇒ Q

T T T T T
T T F F T
T F T T F
T F F F T
F T T F T
F T F F T
F F T F T
F F F F T

Figure 1.9.7

1.10 Tautologies and Contradictions
Some of the strongest tools in proving are propositional statements that are
either always true or always false.
Definition 1.10.1 Tautology. A tautology is a propositional form that is
true for any assignment of truth value to its components ♢

One of the most famous, and most meme’d is the Law of the Excluded
Middle, P ∨ (∼ P ), which is a tautology. It is the classic ”to be or not to be,”
”today I will do my homework or I will not.” We can use a truth table to see
that this statement is always true.
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P ∼ P P ∨ (∼ P )

T F T
F T T

Figure 1.10.2
Another example, that may not immediately be as obvious is

(P ∨Q) ∨ [(∼ P ) ∧ (∼ Q)]

P Q P ∨Q ∼ P ∼ Q (∼ P ) ∧ (∼ Q) (P ∨Q) ∨ [(∼ P ) ∧ (∼ Q)]

T T T F F F T
T F T F T F T
F T T T F F T
F F F T T T T

Figure 1.10.3
Definition 1.10.4 Contradiction. A contradiction is a propositional form
that is false for any assignment of truth value to its components. ♢

An example of a contradiction is the famous P ∧ (∼ P ). This is the classic
”I will go to bed early and I will not go to bed early.”

P ∼ P P ∧ (∼ P )

T F F
F T F

Figure 1.10.5
Another example of a contradiction is: ∼ [P ∨ (∼ P )], that is of course just

a negation of a tautology.

P ∼ P P ∨ (∼ P ) ∼ [P ∨ (∼ P )]

T F T F
F T T F

Figure 1.10.6

1.11 Logical Equivalences
In this course, students will often treat this beginning material of propositions
and truth tables as not connected to the proofs, and just a way to get some
good grades on early homework. I cannot blame the student for this - when
thrown into an unknown world it is hard to hold on to everything.

Yet, we will now dive into equivalences. In the world of proving it may
often be difficult to prove a statement how it appears in the homework, or how
you first discovered it, but if you were to simply re-word it, it becomes simpler
to prove. These reworkings are the equivalences.

1.12 What is an equivalence?
Definition 1.12.1 Logically Equivalent. Two propositional forms are
logically equivalent (or just equivalent) if and only if they have the same
truth values. ♢

The notation we will use for two propositional forms being equivalent is:
P ≡ Q
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To show that two propositional forms are indeed equivalent at the begin-
ning, we only have the tool of truth tables at our disposal. What we will see
in this first example is that no matter our choice of truth value for P , ∼ (∼ P )
has the same truth value, that is

P ≡∼ (∼ P )

Example 1.12.2

P ∼ P ∼ (∼ P )

T F T
F T F

Figure 1.12.3
□

For another example lets see if

[P =⇒ Q] ≡ [(∼ P ) ∨Q]

Example 1.12.4

P Q (P =⇒ Q) ∼ P [(∼ P ) ∨Q]

T T T F T
T F F F F
F T T T T
F F T T T

Figure 1.12.5
Thus we see that the truth values are the same for [P =⇒ Q] and [(∼

P ) ∨Q]! □

1.13 Some Important Equivalences
There are a number of logical equivalences that are very important to become
familiar with. We will build some of these truth tables for you, and leave the
rest for exercises.
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Augustus De Morgan (27 June 1806 - 18 March 1871) was a British mathe-
matician and logician. He is best known for De Morgan’s laws, relating logical
conjunction, disjunction, and negation, and for coining the term ”mathemati-
cal induction”, the underlying principles of which he formalized. De Morgan’s
contributions to logic are heavily used in many branches of mathematics, in-
cluding set theory and probability theory, as well as other related fields such
as computer science.

∗information from Wikipedia∗
Theorem 1.13.1

• ∼ (∼ P ) ≡ P
Double negation

Law
• P ∧Q ≡ Q ∧ P

• P ∨Q ≡ Q ∨ P

Commutativity
Laws

• P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)

• P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R)

Distributivity
Laws
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• P ∨ P ≡ P

• P ∧ P ≡ P

Absorption
Laws

• ∼ (P ∨Q) ≡ (∼ P ) ∧ (∼ Q)

• ∼ (P ∧Q) ≡ (∼ P ) ∨ (∼ Q)

DeMorgan’s
Law

• (P ∨Q) ∨R ≡ P ∨ (Q ∨R)

• (P ∧Q) ∧R ≡ P ∧ (Q ∧R)

Associativity
Laws

• [P =⇒ Q] ≡ [(∼ Q) =⇒ (∼ P )] Contrapositive

• P =⇒ Q ≡ (∼ P ) ∨Q Rob’s Law
Proof. We saw the double negation law in Example 1.12.2, p. 14.
Next we will build the truth tables for two important ones, namely Rob’s Law
and contrapositive, then leave the rest as an exercise.

P Q P =⇒ Q ∼ P ∼ Q (∼ Q) =⇒ (∼ P )

T T T F F T
T F F F T F
F T T T T T
F F T T T T

Figure 1.13.2

P Q P =⇒ Q ∼ P (∼ P ) ∨Q

T T T F T
T F F F F
F T T T T
F F T T T

Figure 1.13.3
■

1.14 The Algebra of Logic
Now that we have established the laws in Theorem 1.13.1, p. 15, we have a
new way to prove two propositional forms are equivalent. It is what I playfully
refer to as the algebra of logic.
Example 1.14.1 For a first example of this, let’s see a proof that

[(P ∨Q) =⇒ R] ≡ [(P =⇒ R) ∧ (Q =⇒ R)]

Proof.

(P ∨Q) =⇒ R ≡ [∼ (P ∨Q)] ∨R (Rob’s Law)
≡ [(∼ P ) ∧ (∼ Q)] ∨R (De Morgan’s)
≡ R ∨ [(∼ P ) ∧ (∼ Q)] (commutativity)
≡ [R ∨ (∼ P )] ∧ [R ∨ (∼ Q)] (distributivity)
≡ [(∼ P ) ∨R] ∧ [(∼ Q) ∨R] (commutativity)
≡ [(P =⇒ R) ∧ (Q =⇒ R)] (Rob’s Law)

■
□
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There are many examples for you to try in this chapter’s exercises, but we
will leave you with one more example.
Example 1.14.2

[P =⇒ (Q =⇒ R)] ≡ [(P ∧Q) =⇒ R]

Proof.

[P =⇒ (Q =⇒ R) ≡ [(∼ P ) ∨ (Q =⇒ R)] (Rob’s Law)
≡ [(∼ P ) ∨ ((∼ Q) ∨R)] (Rob’s Law)
≡ [(∼ P ) ∨ (∼ Q)] ∨R (associativity)
≡∼ (P ∧Q) ∨R (DeMorgan’s)
≡ [(P ∧Q) =⇒ R] (Rob’s Law)

■
□

1.15 Quantifiers
It is now time to take care of those statements that were not propositions from
Example 1.2.3, p. 5, but have probably been bugging you this whole time like:
x + 2 = 4, which are known as an open statement or predicate. But how
on earth are we to do mathematics and these sentences not be in our lexicon?
To handle these we need to quantify the x, by saying we can find a number
so that x + 2 = 4. Before quantifying the statement you didn’t even need to
assume x was a number!

”But Dr. Rob, I could tell x was a number by context!”
But what context was that? Was it that this is a math class and I’m a math

professor? Even so, what kind of number? A rational number (fractions)? A
positive number? An imaginary number?

1.16 The Universe of Discourse
As many of you have assuredly yelled at the book by now, of course I can
determine from context what we are talking about. But this is exactly the
point of this next section, that before starting a discussion you must set your
context. What we will call our universe of discourse.

The universe of discourse is our first example of a set.
So that we handle this playground with the respect it deserves, we will only

give a very brief introduction to the topic right now, just what we need. We
will dive deeper into set theory and use it as one of our major examples later
on in the book!

Let’s start with the very basics and define some things.

• Set: A collection of stuff (or nothing).

• Element: The stuff in the set.

The elements in a set do not have a particular order, so you can think of a
set like a ”magical bag” that holds things.

Set theory, like everything, comes with its own special notation. We often
denote sets with a capital letter, and elements with a lower case letter.
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The symbol ∈ can be read as ”in” or ”is an element of” or ”is a member
of.”

For example, ”x ∈ A” would be read as ”x is in A,” or, ”x is an element of
the set A”, or ”x is a member of the set A.”

Besides just arbitrarily naming a set in an attempt to define a set we can
also describe what the set is by capturing all the elements in the set between
the symbols { and }, then listing the elements separated by commas. For
example, if we just wanted to collect the following numbers in a set:

A = {3, 7, 8, 9}

Or if we were to collect the set of all counting numbers we could use ... to
indicate continuing a pattern:

{1, 2, 3, ...}

We could also use what is known as set builder notation:

1.17 Common Universes
Throughout the text we will use a lot of common universes in our text, but also
to really drive home the wide application of these theories we will use some
less common universes as well. The most common universes we will deal with
are the numbers, of which we will mostly discuss the following:

N = {0, 1, 2, 3, ...} The Natural Numbers
Z =

{...,−3,−2,−2, 0, 1, 2, 3, ...} The Integers

Z+ = {1, 2, 3, ...} The Counting Numbers

Q = {a
b : a, b ∈ Z, with b ̸= 0} The Rational Numbers

R The Real Numbers
C The Complex Numbers

Notice that I take the extremely divisive standpoint that N contains 0.
Later in the book we will justify this, but for now, I am your teacher and thus
you are in my camp on this issue!

1.18 Truth Sets and Predicate Forms
When we are discussing a general universe of discourse we will denote it as U .
We will also often need to speak of a predicate in general terms so we will use
the function notation for predicates. Such as for the predicate x ≥ 3 we can
denote it by P (x). And thus we can now determine that a statement like P (2),
which is 2 ≥ 3, is false.
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After setting our universe, we can now talk about the truth set of a
predicate P (x), that is, the collection of all of the elements in our universe
that make P (x) true.

Example 1.18.1 The truth set for the open sentence ”x2 < 3” depends on
the universe of discourse. When the universe is set as U = N then the truth
set is {0, 1}. When the universe is U = Z then the truth set is {−1, 0, 1}. If
the universe was to be U = R then the truth set would be the open interval
(−

√
3,
√
3). □

Definition 1.18.2 Equivalent Predicates. For a fixed universe of discourse,
we say that two predicates, P (x) and Q(x), are equivalent iff they have the
same truth set.

We will denote this as P (x) ≡ Q(x) ♢
Now let’s see an example of this in play with some, perhaps, unexpected

results.
Example 1.18.3 The predicates P (x) : x2 + 2x = −1 and Q(x) : x ≤ 1 are
equivalent in the universe U = Z+. They are not equivalent in the universe
U = Z. □

This next example should work the way you expected.

Example 1.18.4 The open statements R(x) : x2 = 9 and S(x) : x = 3 are
equivalent in the universe U = N but they again are not equivalent in the
universe U = Z □

1.19 The Existential Quantifier
Consider the predicate 3x = 12. Again, this is not a proposition, as it depends
on the universe and which x from this universe we are talking about. But, there
is a way of choosing an x from the universe to turn this into a proposition -
that is, to consider the statement:

There is an x such that 3x = 12

This proposition is still treated differently than other propositions we have
considered, as it still depends on the universe. This new proposition can be
formed from the predicate by applying a quantifier, that is, we qualify our open
sentence before saying it.

Definition 1.19.1 Existential Quantifier. For a predicate P (x), the sen-
tence

∃x P (x)

is read
”There exists an x such that P (x)”

or
”For some x, P (x)”

or
”We can find an x so that P (x)”

The proposition ∃x P (x) is true iff the truth set of P (x) is nonempty. The
symbol ∃ is called the existential quantifier ♢

One way to show that ∃x P (x) is true for a specific universe is to identify
an object a ∈ U such that P (a) is true.
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Example 1.19.2 For this example lets consider the following predicates

(A) P (x) : x loves books

(B) Q(x) : x eats pizza

(C) R(x) : x > 4

For (C) the statement ∃x R(X) is true in the universe U = R, as 4.5 ∈ R as
well as many other numbers. In statement (A) there are no real numbers that
have any opinions on books from my understanding, but if the universe was all
people then ∃x P (x) is true as I am a person and I love books. Similarly for
(B) the proposition, ∃x Q(x) in the universe of all people is also true, as I also
eat pizza! □

In English there are many ways to say the existential quantifier, such as:

• ”some”

• ”at least one”

• ”there is”

and so many more.
I’d like to end this subsection with the symbolization of a statement

Some P (x) are Q(x)

which should be
(∃x)(P (x) ∧Q(x)

1.20 The Universal Quantifier
The statement, ”everyone reads books” is being qualified by something different
than an exists, yet does have a truth value, and hence is a proposition. It is
this quantifier that we call the universal quantifier.

Definition 1.20.1 Universal Quantifier. For a predicate P (x), the state-
ment

∀x P (x)

is read
”For all x P (x)”

and is true iff the truth set of P (x) is the entire universe. The symbol ∀ is
called the universal quantifier. ♢

In English there are many ways to say the universal quantifier, such as:

• ”for all”

• ”for every”

• ”for each”

and so many more.
Example 1.20.2 For this example let’s consider the following predicates

(A) P (x) : x loves math textbooks

(B) Q(x) : x eats pizza
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(C) R(x) : x > 4

In (C) for the universe U = R the proposition ∀x R(x) is false, as 2 ∈ R yet
2 is not greater than 4. For (A) in the universe of all people, the proposition
∀x P (x) is also false as I have met many students who dislike most math text-
books. Similarly for (B) in the universe of all people the proposition ∀x Q(x)
is also false as I have met a health conscious person who does not eat pizza.

□
There are many many many examples of the use of the universal quantifier,

but one popular one that I’d like to take a moment to discuss is:

All P (x) are Q(x)

this can be symbolized by

(∀x)(P (x) =⇒ Q(x))

1.21 Negating Quantifiers
It is also important to note what the negation of each of these quantifiers is.

∼ [∃ P (x)]

read literally says, ”There does not exist.” Sometimes it is helpful to read this
as ”everybody doesn’t.” That is

∼ [∃x P (x)] ≡ [∀x (∼ P (x))]

∼ ∀ P (x)

says ”not all,” which can be thought of as, ”somebody does.” That is,

∼ [∀x P (x)] ≡ ∃x (∼ P (x))

Example 1.21.1 For these examples we will see multiple ways to write them.

1. ∼ (∀n ∈ Z
√
n ∈ Z) ≡ (∃n ∈ Z

√
n ̸∈ Z)

• ∗NOT∗ (For all integers n,
√
n is an integer)

• For some integers n,
√
n is not an integer.

2. ∼ (∃n ∈ Z n2 = 5) ≡ [∀n ∈ Z n2 ̸= 5]

• ∗NOT∗(There exists an integer n such that n2 = 5

• For all integers n, n2 does not equal 5.

□

1.22 Unique Existence
There is a special case of the existential quantifier, that is used when you want
to be very clear that there is only one special member of the universe that
satisfies your predicate.
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Definition 1.22.1 Unique Existential Quantifier. For a predicate P (x),
the proposition

∃!x P (x)

is read
”there exists a unique x such that P (x)”

and is true iff the truth set of P (x) has exactly one element form the universe.
The symbol ∃! is called the unique existential quantifier. ♢

The difference between the existential and unique existential quantifier is
the number of elements of the universe that satisfy your open statement.
Example 1.22.2 Consider the next two predicates:

• P (x) : x is even

• Q(x) : x is prime

• R(x) : x2 = 4

The statement
∃!x (P (x) ∧Q(x))

is true in the universe U = N as the only number satisfying the statement
P (x) ∧Q(x), that is x is even and prime, is 2 ∈ N. The proposition

∃!x R(x)

on the other hand, is true for the universe U = N, as the only natural number
to satisfy this propostion is 2, but not true for the universe U = Z as there are
two numbers, namely +2 and -2 in the integers which make the predicate true.

□

1.23 More Examples
Now we will give some more examples:
Example 1.23.1

(A) For every Indiana resident x older than 18, x can vote

(∀x)(x Indiana resident ∧ x is older than 18 ∧ x < 10) =⇒ x can vote

(B) Some functions defined at 0 are not differentiable at zero

(∃f)(f is defined at 0 ∧ f is not differentiable at 0)

(C) Some students are math majors and some students are business majors

(∃x)(x is a math majors) ∧ (∃y)(y is a business major)

□

1.24 Exercises
1. Write truth tables for the following:

(a) (∼ P ) =⇒ Q
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(b) P ⇐⇒ Q

(c) (P ∨Q) ∧ [∼ (P ∧Q)]

(d) (P =⇒ Q) ∨Q

(e) (P ∧R) =⇒ Q

(f) (∼ Q) =⇒ Q

(g) P ∨ (∼ P )

(h) ∼ (P ∧Q)

(i) (∼ P ) ∨ (∼ Q)

(j) (∼ P ) =⇒ (R ∧Q)

2. Show the remaining laws are from Theorem 1.13.1, p. 15 are true, using
truth tables.

3. Use a truth table to show whether the following are or are not equivalent:

(a) [P =⇒ ((∼ Q) ∧R)], [(P =⇒ (∼ Q)) ∨ (P =⇒ R)]

(b) [((∼ P ) ∨Q) =⇒ R], [((∼ R) =⇒ P ) ∧ (Q =⇒ R)]

(c) [(P ∧ (∼ Q)) =⇒ R], [P =⇒ (Q ∨R)]

(d) [(P =⇒ Q) ∧ (∼ R)], [(R ∨ P ) =⇒ ((∼ R) ∧Q)]

4. Turn the first statement into the second one. Show your steps and state
which equivalence rule from 1.3.2 you used to get there.

(a) [P =⇒ ((∼ Q) ∧R)] ≡ [(P =⇒ (∼ Q)) ∧ (P =⇒ R)]

(b) [((∼ P ) ∨Q) =⇒ R] ≡ [((∼ R) =⇒ P ) ∧ (Q =⇒ R)]

(c) [(P ∧ (∼ Q)) =⇒ R] ≡ [P =⇒ (Q ∨R)]

(d) [(P =⇒ Q) ∧ (∼ R)] ≡ [(R ∨ P ) =⇒ ((∼ R) ∧Q)]

5. Consider the statement

∃x ∈ R such that x3 = 3.

Which of the following are also ways of saying this statement? (identify
all that apply)

(a) There is at least one real number whose cube is 3.
(b) The cube of each real number is 3.
(c) Some real numbers have cube 3.
(d) The number x has cube 3, for some real number x.
(e) If x is a real number, then x3 = 3.
(f) Some real number has cube 3.

6. Consider the statement

∀n ∈ Z if n+ 1 is even then n is odd.

Which of the following are also ways of saying this statement? (identify
all that apply)

(a) If the sum of an integer and one is even, then that integer is odd.
(b) All integers are even once you add one and are odd.
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(c) Given any integer which once adding one is even, that integer must
be odd.

(d) For all integers, there are some which you add one then it is even.
(e) Any integer which is even once adding one is odd.
(f) All odd integers are even once adding one.

7. Translate the following English statements into symbolic sentences with
quantifiers. The universe for each is given in the parenthetical.

(a) Not all math students are hardworking. (U =all students)
(b) All math students are not hardworking. (U =all students)
(c) There is a smallest positive integer (U = R)
(d) Some people are happy and some people are not happy. (U =all

people)
(e) No one loves everybody

8. Rewrite the statement in English without using the symbols ∀ or ∃. Ex-
press your answer as simply as possible. Then write a negation for the
statement. Determine which statement is true, the original or the nega-
tion.

(a) ∃ a book b, ∀ people p, p has read b.

(b) ∀ odd integers n, ∃ an integer k such that n = 2k + 1.
(c) ∀r ∈ Q, ∃ integers a and b such that r = a/b.

9. Rewrite the statement formally using quantifiers and variables. Write
the negation of the statement.

(a) Everybody believes somebody.
(b) Somebody believes everybody.
(c) Any even integer equals some other integer plus 1.
(d) The number of rows in any truth-table is 2n for some integer n.



Chapter 2

How to Argue

One could characterize a proof as arguing to the most skeptical person you
have ever met that something is true. Now that we have our logic background,
we are ready to start stringing propositions together to make these arguments.

2.1 Arguments
Arguments are so important, they merit their own chapter. They are the
essence of your future proofs, these are your ”steps” you long for from your
calculus class.

2.2 Validness
To begin you give the most general form for these steps.
Definition 2.2.1 Argument. The general form of an argument is:

A

B

∴ C

A and B are the assumptions and C is the conclusion. The symbol ∴ is read
”therefore.” ♢

Arguments are simply propositions listed in an order, so we will need to
make sense of this in our logical framework. To do so we have the following
definition.
Definition 2.2.2 Valid. We will say an argument is valid whenever

(A ∧B) =⇒ C

is a tautology. ♢
Definition 2.2.3 Invalid. We will say an argument is invalid whenever

(A ∧B) =⇒ C

is a contradiction. ♢
Recall, what it takes for an implication to be true, that is either the an-

tecedent is false or the consequent is true.

25
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Example 2.2.4 Here are some examples of valid arguments:

All parabolas are functions of degree 2
All functions of degree 2 are quadratic

∴ All parabolas are quadratic

An apple is purple
An apple is a fruit

∴ An apple is purple

All spiders have 8 legs
A poodle is a spider

∴ A poodle has 8 legs

Here is an example of an invalid argument:

All chickens are animals that eat corn
All chickens are animals that have wings
∴ All animals that eat corn have wings

□
Notice that it is not the truth of the premises that makes an argument valid

or invalid, but rather the truth of the conclusion.

2.3 Arguments with Propositional Forms
In this section we will ”pull open the hood” a bit, and explore the inner work-
ings of the arguments with general propositional forms.

We begin with perhaps the most famous arguments. These are surely not
the only tools we will use, but definitely some of the more important ones.

Modus Ponens.

Modus Ponens is a specific type of argument with two premises:
P =⇒ Q, and P , and concludes Q. That is

P =⇒ Q

P

∴ Q

An example of this is ”If it is raining then the ground is wet. It is
raining. Therefore the ground is wet.”

Modus Tollens.

Modus Tollens is simply the application of the contrapositive,
specifically: P =⇒ Q, and ∼ Q, and conludes ∼ P . That is

P =⇒ Q

∼ Q

∴ ∼ P

A similar example of this is ”If it is raining then the ground is wet. The
ground is not wet. Therefore it is not raining.”
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Even though these happen to be the most famous they are far from the
only. Here is a not so complete list:

Argument: Name:

P

∴ P ∨Q
Addition

P ∧Q

∴ P
Simplification

P

Q

∴ P ∧Q

Conjunction

P =⇒ Q

P

∴ Q
Modus Ponens

P =⇒ Q

∼ Q

∴ ∼ P
Modus Tollens

P =⇒ Q

Q =⇒ R

∴ P =⇒ R

Hypothetical
Syllogism

P ∨Q

∼ P

∴ Q

Disjunctive Syl-
logism

Figure 2.3.1
Now let’s see some examples of these in play.
Now that we have our arguments written using propositional forms we can

verify that each of these arguments are valid using a truth table, that is, seeing
they are all tautologies, or that they are always true.

We will do Hypothetical Syllogism and leave the rest as an exercise to the
reader.

P Q R P =⇒ Q Q =⇒ R P =⇒ R [(P =⇒ Q) ∧ (Q =⇒ R)] =⇒ (P =⇒ R)

T T T T T T T
T T F T F F T
T F T F T T T
T F F F T F T
F T T T T T T
F T F T F T T
F F T T T T T
F F F T T T T

Figure 2.3.2
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Example 2.3.3 For this example, let’s set a few propositions:

P : It is sunny today

Q : It is colder than yesterday
R : We will go hiking

S : We will go for a bike ride
W : We will be home by dark

Next, consider the list of premises.
• ∼ P ∧Q : It is not sunny today and it is colder than yesterday

• R =⇒ P : We will go hiking only if it is sunny

• (∼ R) =⇒ S : If we do not go swimming then we will go hiking

• S =⇒ W : If we go on a bike ride then we will be home before dark
When can then make the following arguments:
(A) To start we will only consider the first premise.

(∼ P ) ∧Q

∴ ∼ P

Since we have assumed that it is not sunny and colder than yesterday we
can conclude it is not sunny outside, using a conjunction.

(B) Now let’s use the conclusion from (A), with the next premise.

(∼ P )

R =⇒ P

∴ ∼ R

That is, if we assume that it is not sunny and that we will go hiking
only if it is sunny, then we can conclude that we do not go hiking, using
Modus Tollens.

(C) Now using the conclusion from (B) and our next premises we see

(∼ R)

(∼ R) =⇒ S

∴ S

Since we have assumed that we are not hiking and that if we don’t hike
then we will go on a bike ride we can thus conclude that we will go on a
bike ride by Modus Ponens.

(D) Now using the conclusion of (C) and our next premise.

S

S =⇒ T

∴ W

Hence, since we assumed that we are going on a bike ride and if we go on
a bike ride we will be back home by dark we can conclude that we will
be back by dark, again by Modus Ponens.

We have just done our first proof, and shown if all the statements are
assumed then we can conclude that we will be home before dark! □
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2.4 The Bad and the Ugly
There are many ways to make a valid argument, and many ways to make an
invalid argument. As a student of proofs it is inevitable that you will make
all of the mistakes, and also find new and amazing ways of making invalid
arguments. But, don’t fret, that is the beautiful learning journey you are on!

A very common mistake that students will make when arguing is what is
known as circular reasoning.

Catch 22.

Circular reasoning or begging the question or catch 22 hap-
pens when we assume the statement we are trying to conclude.

The term Catch 22 was coined by the character Doc Daneeka, an army psychia-
trist, in the novel Catch 22, to describe a governmental loophole that prevented
pilots from requesting a mental evaluation to avoid dangerous missions.

This fallacy comes from the very valid argument:

P

∴ P

It’s just this argument doesn’t get you very far.
Consider the next example of circular reasoning.

Example 2.4.1 Say I was trying to conclude that a number x is even. Circular
reasoning would be: ”Assume that x is even, thus x is even.” □

Another misstep that students are bound to take is almost a misapplication
of the contrapositive, or thinking the implication is stronger than it is.

Denying the Antecedent.

Denying the antecedent is the invalid argument

P =⇒ Q

∼ P

∴ ∼ Q

Recall that the contraposition is

[P =⇒ Q] ≡ [(∼ Q) =⇒ (∼ P )]

but not (∼ P ) =⇒ (∼ Q).

Example 2.4.2 Consider the statement: ”If it is sunny then we will go on a
bike ride.” We still might go on a bike ride if it’s not sunny, I was just saying
if it’s sunny we will definitely go! □

Another mistake in a similar fashion is again mistaking the power of the
implication.

Affirming the Conclusion.

Affirming the conclusion is the invalid argument
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P =⇒ Q

Q

∴ P

Recall that Q =⇒ P is NOT the same as P =⇒ Q.
Example 2.4.3 Consider the statement: ”If it is sunny then we will go on a
bike ride.” Just because we go on a bike ride doesn’t some how make it sunny,
again, I was just saying if it’s sunny we will definitely go! □

2.5 Arguments with Quantifiers
We have seen in Section 2.1, p. 25 that quantified statements can lead to inter-
esting arguments. For example

All A are B

All B are C

∴ All A are C

For example ”All longshoremen are in a union” and ”All unions have dues”
thus we can conclude that ”All longshoremen pay dues.”

Next, we have a far from complete list:
Argument: Name:

∀x P (x)

∴ P (c) where c ∈ U
Universal In-

stantiation

P (c) for an arbitrary c ∈ U
∴ ∀x P (x)

Universal Gen-
eralization

∃x P (x)

∴ P (c) for some c ∈ U
Existential In-

stantiation

P (c) for some c ∈ U
∴ ∃x P (x) ∨Q

Existential Gen-
eralization

These will be instrumental to our proofs involving quantifiers shortly! And
since we will attempt to put them in more plain language...
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The How-To’s with Assuming quantifiers:

Assuming Can do Name
∀ It always works so use it for one that you already have Universal Instantiation
∃ Can produce an element it works for and then you can use it Existential Instantiation

The How-To’s with Concluding quantifiers:

Want to Conclude Must do Name
∀ choose an arbitrary one and then show it works for that one Universal Generalization
∃ GIVE an element and then show it works for that one Existential Generalization

Figure 2.5.1

2.6 Exercises
1. Assume that the truth value assignments for each statement are correct.

• All math students are smart. (True)
• All smart people are goofy. (True)
• All smart people are math students. (False)
• All math students are silly. (True)

Given these assigned truth values, determine the validity and soundness
of each of the following arguments:

(a)
All math students are smart.
All smart people are silly.
∴ All math students are silly.

(b)
All math students are silly.
All smart people are silly.
∴ All math students are smart.

(c)
All smart people are math students.
All math students are silly.
∴ All smart people are silly.

(d)
All smart people are silly.
All math students are silly.
∴ All math students are silly.

2. Using truth tables show that the remaining arguments are valid in Fig-
ure 2.3.1, p. 27

3. Use the following as premises

• Consider the following propositions.
◦ P : Today is Sunday
◦ Q : I go shopping
◦ R : I go shopping at the mall
◦ S : I go shopping at Micro Center
◦ W : I will buy a gaming computer

Next, we will make the following assumptions:



CHAPTER 2. HOW TO ARGUE 32

(A) I’ll go shopping if it is Sunday.
(B) If I go to Micro Center then I will not go to the mall.
(C) I am not going to the mall.
(D) I buy a gaming computer whenever I go to Micro Center.

Using the arguments (and naming when you use them) in Figure 2.3.1,
p. 27 conclude W .
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Direct Proofs

In this chapter we will begin to actually prove!
What one proves in an introduction to proofs class varies. But for this book

we start by letting the student use college algebra as a crutch to lean on as
they enter this new and scary world of proving.

3.1 Where We Start
The biggest pain and question of all beginning proofs student is:

”What can I assume?”

To help answer that, we will begin every chapter with either a quick note or a
detailed list.

3.2 What We Can Assume
As this is the first chapter of actual proving we will begin with a detailed list!

Things you can assume without mentioning:

1. That adding/subtraction/multiplication of integers works like you think.
For example

2− 3 = −3 + 2

(Notice I did not say division! DO NOT use division in this chapter!)

2. Basic college algebra like:

x2 − 3x = x(x− 3)

3. Basic ordering properties of the integers such as:

1 < 2 or 12 ≥ 7, etc.

Things you can assume but MUST mention:

1. Closure of addition in the Integers:
If x ∈ Z and y ∈ Z then (x+ y) ∈ Z
”when you add two integers you get an integer...”

33
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2. Closure of subtraction in the Integers:
If x ∈ Z and y ∈ Z then (x− y) ∈ Z
”when you subtract two integers you get an integer...”

3. Closure of multiplication in the Integers:
If x ∈ Z and y ∈ Z then (x · y) ∈ Z
”when you multiply two integers you get an integer...”

4. Any Theorem/Lemma/Corollary given in this chapter, unless otherwise
stated.

5. The Division Algorithm
∀a, b ∈ Z, with a ̸= 0, ∃!q, r ∈ Z such that

b = aq + r

where 0 ≤ r ≤ |a|. The q is called the quotient and the r is called the
remainder.
(once we have enough tools we will prove this Proposition 6.12.6, p. 121
but for now we will assume it)

For anything else... just don’t assume it! If you can’t do a proof without
making the assumption you want just write that in your proof! We can work
on it from there!

3.3 Our Terms
Now, in order to start proving things we need the objects we are going to
prove them about. In addition, when we begin our journey in proving, I’d
like to limit the moving pieces to those few assumptions just listed, and most
importantly these following definitions.

I begin by being this limiting to make sure our playground is small enough
that no one hurts themselves by falling off monkey bars that are too high, but
also large enough that we can actually get some real proving in. We’ll start
with a few common definitions, namely, odd, even, and divides.
Definition 3.3.1 Even. ∀x ∈ Z, x is even iff ∃k ∈ Z such that x = 2k ♢
Definition 3.3.2 Odd. ∀x ∈ Z, x is odd iff ∃k ∈ Z such that x = 2k + 1 ♢
Definition 3.3.3 Divides. ∀x ∈ Z and y ∈ Z, we say x divides y iff ∃k ∈ Z
such that y = kx

The notation for x divides y is x|y ♢
It is important to become so familiar with these that you could say them

in your sleep.

Note 3.3.4 Definitions are ASSUMPTIONS/PREMISES, so when us-
ing arguments from the previous chapter use them as such.

3.4 Direct Proof
Our first method before proving is known as direct proof, it is the student’s
go-to throughout their career.
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Most often we will be proving statements that look like:

P =⇒ Q

So, before we dive into it, I’d like to give the song that we will sing whenever
we start proving.

• What’s the P? (The ”if” part)

• What’s the Q? (The ”then” part)

• What’re the definitions?

• Now, what to do? (Which proving method - until we learn more this will
always be direct proof)

3.5 What is a Direct Proof?
Now without further ado - the direct proof.

Direct Proof of P =⇒ Q.

Assume P
...
Therefore Q
Thus P =⇒ Q

Here is where the title of the text becomes clear:
Beginning -- Assume P
Muddle -- ...
End -- Therefore Q

3.6 Does it Work?
We have an entire chapter about arguments, so does this direct proof work?

Is the direct proof a valid argument?

P

Q

∴ P =⇒ Q

To see this the ”long way,” lets build a truth table:

P Q P ∧Q P =⇒ Q [P ∧Q] =⇒ [P =⇒ Q]

T T T T T
T F F F T
F T F T T
F F F T T

And we see that
[P ∧Q] =⇒ [P =⇒ Q]

is a tautology! I.e. the direct proof is a valid argument!
Note 3.6.1 Yes, your eyes do not deceive you, I did just prove that the direct
proof is a proof.
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3.7 Our First Proof
Now that we have our first weapon in hand (the direct proof) let’s start to slay
our first dragon.

Prove: For all integers x, whenever x is odd then x+ 1 is even.
Before we begin any proof we sing our song (play-along):
”What’s the P?”1. x is odd
”What’s the Q?”2. x+ 1 is even
”What’re the definitions?”3. Odd (Definition 3.3.2, p. 34) and even (Def-

inition 3.3.1, p. 34)!
”Now, what to do?”4. A direct proof! (it is the only method we know so

far)

3.8 The Beginning
One purpose of our fun song is for us to to split what we want to prove into
the Beginning and the End.

Once we have it split like that we see something left over... this is the
beginning quantifier. This quantifier is quite often forgotten/assumed when
it is not written, but assumed nonetheless. Therefore, we call it the hidden
quantifier. Either way the statement we are trying to prove is now broken up
as follows:

∀x ∈ Z if x is odd then x+ 1 is even

To prove our statement with this beginning quantifier, according to Univer-
sal Generalization from Figure 2.5.1, p. 31 we need to show it works with an
arbitrary integer.

To indicate this in our proof we may begin with either of the sentences:
”Let x be an integer.”
or
”Choose an arbitrary integer x”
Now, we can take care of the Beginning from the direct proof:
Assume the ”P”
”Assume that x is odd.”

3.9 The Muddle
To proceed with our proof we don’t have much except the definitions. (It can
be helpful, especially in these early stages of proof writing, to write the relevant
definitions to the side in your scratch work - this is why it’s part of the song!)

From the definition of odd (Definition 3.3.2, p. 34) we can make the conclu-
sion that:

x must look like:
x = 2k + 1

for some integer k.
Invoking this definition in this manner is an application of Existential In-

stantiation from Figure 2.5.1, p. 31
To continue muddling along we can use some college algebra, as is allowed

by Section 3.2, p. 33 and calculate:

x+ 1 = (2k + 1) + 1

= k + 2
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= 2(k + 1)

The x + 1 on the left of this equation is the end conclusion we’re aiming for!
(”What’s the Q” from the song)

The stuff on the right is what we manipulate to make it ”look like,” or ”fit,”
the definition of even. We will attempt to make this more clear in the next
subsection.
Remark 3.9.1 I choose these as the first types of proofs to show/have students
do first, because the muddle is basically the same for all of them: ”invoke a
definition then calculate.” It gives the students something to hold on to as they
are still trying to digest the previous chapters...

3.10 The End
From the muddle, we have:

x+ 1 = 2(k + 1)

To be able to make our conclusion

Q : x+ 1 is even

we must use definition of even (Definition 3.3.1, p. 34), which uses an existential
quantifier, so we must (Figure 2.5.1, p. 31) be able to produce/point at an
integer, so that x+ 1 is this integer times 2.

We have exactly that, because (Section 3.2, p. 33) k + 1 is an integer!
To write this in our proof we can say:
”Since k + 1 is an integer (this is where/how we ”assume but mention” the

closure of addition in the integers), by definition of even, x+ 1 is even.”
Finally we should end every proof with a wrap-up sentence. This sentence

is to summarize the proof, most importantly laying out your proving method,
in this example a direct proof.

For this proof our wrap-up could look like:
”Since we assumed that an arbitrary integer x was odd and showed that

x+ 1 is even, we can conclude that for all integers x, whenever x is odd then
x+ 1 is even, by direct proof.”

At last we indicate that our proofs are over with a:

QED

When a proof is finished, customarily, we either write ”QED” or □ at the
bottom. This comes from the Latin ”quod erat demonstrandum,” which means
”that which was to be demonstrated.”

To wrap-up everything in a pretty bow, let’s see the whole proof in one
spot.
Example 3.10.1 Prove: For all integers x, whenever x is odd then x + 1 is
even.

Let x be an integer. Assume x is odd. Thus, by the definition of odd, we
can find an integer k so that x = 2k + 1.

Calculate:

x+ 1 = (2k + 1) + 1

= k + 2

= 2(k + 1)
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Since k + 1 is an integer, by definition of even, x+ 1 is even.
Since we assumed that an arbitrary integer x was odd and showed that x+1

is even, we can conclude that for all integers x, whenever x is odd then x + 1
is even, by direct proof. □ □

3.11 More Direct Proof Examples
We will give each of these examples a subsection, then further subdivide the
sections for their in-depth explanations.

3.12 Direct Proof Example 2
Prove: For all integers x and y, if x and y are both odd then x+ y is even.

Before we begin any proof we sing our song (play-along):
”What’s the P?”1. x and y are both odd
”What’s the Q?”2. x+ y is even
”What’re the definitions?”3. Odd (Definition 3.3.2, p. 34) and even (Def-

inition 3.3.1, p. 34)!
”Now, what to do?”4. A direct proof! (it is the only method we know so

far)
The Breakdown:

∀x, y ∈ Z if x and y are both odd then x+ y is even

3.13 The Beginning
Just as before we begin by ”shoveling off” our beginning quantifier (Section 2.5,
p. 30) by saying something along the lines of:

”Choose arbitrary integers x and y.”
Now, we take care of the beginning of our direct proof...
Assume the P
So in our example we would write:
”Assume both x and y are odd.”

3.14 The Muddle
Again, as will be quite often even after this class, we do not have much but
the definitions (Section 3.3, p. 34), so we will apply these definitions (making
note they involve quantifiers Figure 2.5.1, p. 31).

To apply the definition of odd (Definition 3.3.2, p. 34) to our integer x we
use the exists from the proof to produce a new integer which will need a name,
lets name it t. This t can be found so that x = 2t+ 1.

Some questions that often arise here are: ”but the proof says k?” Yet, in
fear of sounding like a broken record we are using/applying the definition of
odd, and when using the ∃ (by Figure 2.5.1, p. 31) we can find some integer
(in this example) to do the job. The k in the definition is just a stand-in for
some integer.

So for our proof we could write:
”By the definition of odd we can find an integer t so that x = 2t+ 1.”
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Next, we do the exact same procedure with the y, but because y is a new
number and it is a brand new application of the definition of odd we can
produce a a new integer (Figure 2.5.1, p. 31), so this time lets name it s.

That is, in our proof we could write:
”Again, by the definition of odd, we can find an integer s such that y =

2s+ 1.”
Having successfully applied our definitions we now have something we can

calculate with, so lets try to add what is in our Q, namely x+ y

x+ y = (2t+ 1) + (2s+ 1)

= 2s+ 2t+ 1 + 1

= 2s+ 2t+ 2

= 2(s+ t+ 1)

Now, we can (hopefully) see our definition of even at the last equality, signalling
that we are ready for our end.

3.15 The End
From the muddle, we have:

x+ y = 2(s+ t+ 1)

To be able to make our conclusion

Q : x+ y is even

we must, again, use the definition of even (Definition 3.3.1, p. 34), which uses
an existential quantifier. So we must (Section 2.5, p. 30) be able to produce/
point at an integer, so that x+ y is this integer times 2.

We have exactly that, because (Section 3.2, p. 33) s+ t+ 1 is an integer!
To write this in our proof we can say:
”Since s+ t+ 1 is an integer, by definition of even, x+ y is even.”
Finally, we should end every proof with a wrap-up sentence. This sentence

is to summarize the proof, most importantly laying out your proving method,
in this example a direct proof.

For this proof our wrap-up could look like:
”Since we assumed that an arbitrary two integers x and y were odd and

showed that x + y is even, we can conclude that for all integers x and y,
whenever x and y are odd then x+ 1 is even, by direct proof.”

Now let’s see everything written together in a single spot.
Example 3.15.1 1. Prove: For all integers x and y, if x and y are both odd
then x+ y is even

Choose arbitrary integers x and y. Assume both x and y are odd. By the
definition of odd we can find an integer t so that x = 2t + 1. Again, by the
definition of odd, we can find an integer s such that y = 2s+ 1.

Now calculate:

x+ y = (2t+ 1) + (2s+ 1)

= 2s+ 2t+ 1 + 1

= 2s+ 2t+ 2

= 2(s+ t+ 1)

Since s+ t+ 1 is an integer, by definition of even, x+ y is even.
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Since we assumed that an arbitrary two integers x and y were odd and
showed that x + y is even, we can conclude that for all integers x and y,
whenever x and y are odd then x+ 1 is even, by direct proof. □

3.16 Direct Proof Example 3
The last two examples had even in the P and even in the Q. In fear of students
thinking this is some sort of immutable law/pattern lets change that pattern
this time.

Prove: For all integers x and y if x and y are both odd then x · y is odd.
Before we begin any proof we sing our song (play-along):
”What’s the P?”1. x and y are both odd
”What’s the Q?”2. x · y is odd
”What’re the definitions?”3. Odd (Definition 3.3.2, p. 34)!
”Now, what to do?”4. A direct proof! (it is the only method we know so

far)
The Breakdown:

∀x, y ∈ Z if x and y are both odd then x+ y is odd.

3.17 The Beginning
We begin by taking care of our leading quantifier, ∀x, y ∈ Z, trying our best
to never forget Figure 2.5.1, p. 31. To do this we could use a variety of english
statements to do this, for example:

• ”Select two random integers x and y”

• ”Choose two arbitrary integers x and y”

• ”Let x and y be integers”

Next, we do the first step of a direct proof, that is, assume the P . From
our song we already know this, and that is:

”Assume x and y are both odd”

3.18 The Muddle
Now, as we see in this first class of proofs so often, the only tools we really
have at our disposal are the definitions from Section 3.3, p. 34. In this proof
we have to apply a definition twice from our previous line/assumption namely:

• x is odd

• y is odd

Something that bears repeating over and over and over and over again, is to
always remember Figure 2.5.1, p. 31. Right now we need to remember this
because the definition of odd (Definition 3.3.2, p. 34) invokes an existential
quantifier. So to apply the definition of odd for x we can use language like:

”We can find an a ∈ Z so that x = 2a+ 1.”
To use the definition of odd for our y we can use language like:
”We can also find a b ∈ Z so that y = 2b+ 1.”
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Now that we have used our definitions we can move to our usual muddle
where we use some good ol’ college algebra. In a more general look at proofs
as a whole, you should keep in mind what we are trying to conclude, i.e. the
Q, namely that x+ y is odd. So we should calculate x+ y.

Calculate:

x+ y = (2a+ 1) · (2b+ 1)

= 4ab+ 2a+ 2b+ 1

= 2(2ab+ a+ b) + 1

3.19 The End
From the muddle we now have:

x+ y = 2(2ab+ a+ b) + 1

Now, using the definition of odd (Definition 3.3.2, p. 34) and of course Fig-
ure 2.5.1, p. 31 we can conclude from the muddle that x + y is odd, as 2ab is
an integer and thus (2ab+ a+ b) is an integer, and hence we have that x+ y
is an integer times 2 then plus one.

Now let’s see everything written together in a single spot, with a proper
wrap-up.
Example 3.19.1 2. Prove: For all integers x and y if x and y are both odd
then x · y is odd.

Select two random integers x and y. Assume that x is even and y is odd.
By definition of even we can find an integer a so that x = 2a+1. Also, by the
definition of odd we can find an integer b so that y = 2b+1. Now we calculate:

x+ y = (2a+ 1) · (2b+ 1)

= 4ab+ 2a+ 2b+ 1

= 2(2ab+ a+ b) + 1

Now since 2ab+ a+ b is an integer, we see that x+ y is odd.
To summarize, since we chose arbitrary integers x and y which we assumed

were even and odd, respectively, by direct proof we proved that for all integers
x and y, if x is even and y is odd, then x+ y is odd. □ □

3.20 Direct Proof Example 4
Now let’s see an example that is not even nor odd.

Prove: ∀x, y ∈ Z if 5|x and 5|y then 5|(x− 2y)
Before we begin any proof we sing our song (play-along):
”What’s the P?”1. 5|x and 5|y
”What’s the Q?”2. 5|(x− 2y)

”What’re the definitions?”3. divides (Definition 3.3.3, p. 34)
”Now, what to do?”4. A direct proof! (it is the only method we know so

far)
The Breakdown:

∀x, y ∈ Z 5|x and 5|y =⇒ 5|(x+ y)
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3.21 The Beginning
This proof is the same as we have been doing at the beginning, as it starts
with our beginning quantifier. As usual we take care of that using:

”Let x and y be integers.”
As we are still doing a direct proof, our first step involving this is Assume the P ,

and for this example it is:
”Assume that both 5|x and 5|y.”

3.22 The Muddle
In this example we go to our definitions again (being careful for the quan-
tifier Figure 2.5.1, p. 31), specifically for 5|x we use the definition of divides
(Definition 3.3.3, p. 34) as follows:

”By definition of divides we can find an a ∈ Z so that x = 5a.”
For 5|y we apply the definition of divides (Definition 3.3.3, p. 34) as:
”By definition of divides we can find a b ∈ Z so that y = 5b.”
Something I have seen students do here is write ”exists an integer b.” You

are using the existential quantifier to produce a specific integer (Figure 2.5.1,
p. 31), by saying exists you are just telling me that you could theoretically find
one, not telling that you are producing one to use.

So now that we have something we can use, like usual we can calculate:

(x− 2y) = (5a)− (2 · (5b))
= 5(a− 2b)

3.23 The End
From the muddle we have

x+ y = 5(a− 2b)

and then we can reference a couple of our assumptions from Section 3.2, p. 33,
and say:

”Since 2b is an integer a a− 2b is an integer by the definition of divides 5
divides x− 2y.”

Now let’s see everything written together in a single spot, with an appro-
priate wrap-up.

Example 3.23.1 3. Prove: ∀x, y ∈ Z if 5|x and 5|y then 5|(x− 2y)
Let x and y be integers. Assume that 5 divides both x and y. Next, we

calculate:

(x− 2y) = (5a)− (2 · (5b))
= 5(a− 2b)

Since 2b is an integer it follows that a− 2b is an integer, thus by the definition
of divides, 5 divides x− y.

To summarize, since we chose arbitrary integers x and y and assume that 5
divides both of them, and have shown that 5|(x− 2y), by direct proof we have
shown that for any integers x and y, if 5|x and 5|y then 5|(x− 2y).□ □
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3.24 Direct Proof Example 5
Our last detailed example of a direct proof is a classic inequality. Inequalities
will play a large role in your future analysis class.

Prove: For all positive real numbers x and y, if a < b then b2 − a2 > 0.
Before we begin any proof we sing our song (play-along):
”What’s the P?”1. a < b

”What’s the Q?”2. b2 − a2 > 0

”What’re the definitions?”3. x is positive mean x > 0

”Now, what to do?”4. A direct proof! (it is the only method we know so
far)

The Breakdown:

∀x, y ∈ R with x > 0 and y > 0 a < b =⇒ 0 < (a2 − b2)

3.25 The Beginning
This beginning is the same as the others. We take care of the beginning quantifier
by:

”Let x and y be positive real numbers.”
For our approach of a direct proof we need to start by assuming the P , that

is:
”Assume that a < b”

3.26 The Muddle
Now, as is in most inequality proofs first we need to work backwards. That is
notice:

b2 − a2 = (b− a)(b+ a)

by our allowed assumptions of basic college algebra. But we have that b+a > 0
since both a > 0, and b > 0, again with our assumptions of college algebra.
That is we can, lets say, add b to the left side of a > 0 and add 0 to the right
side. Also, b − a > 0 since subtracting a from both sides of our assumption
results in a < b.

3.27 The End
To write our proof in a logical format we will have to go the opposite direction,
as otherwise we will have said our conclusion before we concluded it, essentially
falling for circular reasoning, that is:

Subtracting a from both sides of our assumption a < b we see that b−a > 0,
and by adding b to the left and 0 to the right of a > 0 we get that b + a > 0.
Finally, since b+ a > 0 we can multiply both sides of b− a > 0 by (b+ a) and
arrive at:

b2 − a2 = (b− a)(b+ a) > 0.

Now let’s see everything written together in a single spot.
Example 3.27.1 4. Prove: For all positive real numbers x and y, if a < b
then b2 − a2 > 0.

Let x and y be positive real numbers. Assume that a < b.
Since subtracting a from both sides of our assumption a < b we see that
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b − a > 0, and by adding b to the left and 0 to the right of a > 0 we get that
b + a > 0. Finally, since b + a > 0 we can multiply both side of b − a > 0 by
(b+ a) and arrive at:

b2 − a2 = (b− a)(b+ a) > 0.

Since we assumed x and y are positive real numbers and a < b, then we
showed that (b2−a2) > 0, by direct proof we can conclude, that for all positive
real numbers x and y if a < b then (b2 − a2) > 0. □ □

3.28 Proofs with Conjunctions and Disjunctions
So far we have been proving the prototypical

P =⇒ Q

as it is perhaps one of the most common propositional forms used in mathemat-
ics, and otherwise. Yet, in all of our examples thus far both P and Q have been
atomic propositions. In this section we will be substituting the antecedent and
consequent with compound propositions.

Assuming an Or.

For propositions P , Q, and R, to prove a statement in the form of

(P ∨R) =⇒ Q

First we:
Prove: P =⇒ Q
then we:
Prove: R =⇒ Q

To verify that this argument is valid, we will use a truth table to show:

[(P =⇒ Q) ∧ (R =⇒ Q)] =⇒ [(P ∨R) =⇒ Q]

is a tautology. To do so we will show a stronger result using the tricks of
Section 1.14, p. 16.

(P ∨R) =⇒ Q ≡ [∼ (P ∨R)] ∨Q (Rob’s Law)
≡ [(∼ P ) ∧ (∼ R)] ∨Q (De Morgan’s)
≡ [(∼ P ) ∨Q] ∧ [(∼ R) ∨Q] (distribution)
≡ [P =⇒ Q] ∧ [R =⇒ Q] (Rob’s Law)

Now lets see an example of this in play.
Example 3.28.1 Prove: for any two integers x and y if x is even or y is even
then x · y is even.
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Proof. Let x and y be integers.
First assume that x is even. By definition of even (Definition 3.3.1, p. 34) we
can find an integer k so that x = 2k. Calculate:

x · y = (2k) · y
= 2(ky)

since ky is an integer by the definition of even, x · y is even.
Next, we instead assume y is even. By definition of even we can find an integer
t so that y = 2t. Calculate:

x · y = x · (2t)
= 2(xt)

since xt is an integer by the definition of even, x · y is even.
Now since we have shown that for ∀x, y ∈ Z that both x is even implies x · y is
even and y is even implies x · y is even, we have shown that ∀x, y ∈ Z. ■

□
Another interesting scenario is when we are trying to conclude a disjunction.

Concluding an Or.

For propositions P , Q, and R, to prove a statement in the form of

P =⇒ (Q ∨R)

We instead
Prove: [P ∧ (∼ R)] =⇒ Q

That this argument is valid can be seen by showing that

[P =⇒ (Q ∨R)] ≡ [[P ∧ (∼ R)] =⇒ Q]

To do that we will again use the tricks of Section 1.14, p. 16.

P =⇒ (Q ∨R) ≡ (∼ P ) ∨ (Q ∨R) (Rob’s Law)
≡ (∼ P ) ∨ (R ∨Q) (commutativity)
≡ [(∼ P ) ∨R] ∨Q (associativity)
≡∼ [P ∧ (∼ R)] ∨Q (De Morgan’s)
≡ (P ∧ (∼ R)) =⇒ Q (Rob’s Law)

Now lets see an example.
Example 3.28.2 Prove: For all integers x and y if x is even then y is odd or
x+ y is even
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Proof. Let x and y be arbitrary integers. Assume that x is even and that y
is not odd. By the definition of even (Definition 3.3.1, p. 34) we can find an
integer k so that x = 2k. By the division algorithm (Section 3.2, p. 33) we can
find integers q and r such that 0 ≤ r < 2 such that y = 2q + r. Yet since we
assumed y is not odd r ̸= 1, and since r is an integer and 0 ≤ r < 2 and the
only integers which satisfy this inequality are 0 and 1, which only leaves r = 0
thus y = 2q. Now calculate:

x+ y = 2k + 2q

= 2(k + q)

Since k + q is an integer by the definition of even x+ y is even.
Since we have assumed for two arbitrary integers x and y that x is even and y
is not odd, and we have concluded that x+ y is even, we can conclude that for
all integers x and y, if x is even then y is odd or x+ y is even. ■

□
The last propositional form we consider in this section is the following.

Concluding an And.

For propositions P , Q, and R, one way to prove a statment in the
form of

P =⇒ (Q ∧R)

First we:
Prove: P =⇒ Q
then we:
Prove: P =⇒ R

To see that this is a valid way of proving, we once again show an even
stronger result using the methods of Section 1.14, p. 16.

P =⇒ (Q ∧R) ≡ (∼ P ) ∨ (Q ∧R) (Rob’s Law)
≡ [(∼ P ) ∨Q] ∧ [(∼ P ) ∨R] (distribution)
≡ [P =⇒ Q] ∧ [P =⇒ R] (Rob’s Law)

Example 3.28.3 Prove: For all integers a and b, if 3|(a − 2) and 3|(b − 1)
then 3|(a+ b) and 3|(a− 2b)
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Proof. Let a and b be arbitrary integers.
Assume that 3|(a − 2), also assume that 3|(b − 1). By definition of divides
(Definition 3.3.3, p. 34) we can produce an integer k such that a− 2 = 3k, and
hence by adding 2 to both sides of this equation we get a = 3k + 2. As well
by the definition of divides we can come forth with another integer t with the
property that b − 1 = 3t, this time adding 1 to both sides of the equation we
see that b = 3t+ 1.
Now, we will prove: if 3|(a− 2) and 3|(b− 1) then 3|(a+ b), by calculating:

a+ b = (3k + 2) + (3t+ 1)

= 3k + 3t+ 3

= 3(k + t+ 1)

and since k + t+ 1 is an integer by the definition of divides 3|(a+ b).
Next, we will prove: if 3|(a − 2) and 3|(b − 1) then 3|(a − 2b), instead by
calculating:

a+ b = (3k + 2)− 2(3t+ 1)

= 3k + 2− 6t− 2

= 3k − 6t

= 3(k − 2t)

and since k − 2t is an integer by the definition of divides 3|(a− 2b).
Now that we have assumed that a and b are arbitrary integers and assumed
that 3|(a−2) and 3|(b−1) then we showed that both 3|(a+b) and that 3|(a−2b)
we can conclude that for all integers a and b, if 3|(a − 2) and 3|(b − 1) then
3|(a+ b) and 3|(a− 2b). ■

□

3.29 More Examples
To end this chapter we give some more examples without all of the commentary
of our song nor the beginning, muddle, and end.
Example 3.29.1 Prove: For all integers a, b, and c if a divides b and b divides
c then a divides c

Find some integers a, b, and c. Assume a divides b and b divides c. Thus
by definition of divides, we can find an integer k such that b = ak. Also by
definition of divides, we can find an integer l such that c = bl

Calculate:

c = bl

= (ak)l

= a(kl)

Since kl is an integer, by definition of divides, a divides c. Thus by direct proof,
according to the definition of divides, if if a divides b and b divides c then a
divides c. □ □
Example 3.29.2 Prove: For all integers x and y, if x and y are even, x+ y
is even.

Let x and y be integers. Assume x and y are even. Thus, by definition of
even, we can find an integer k so that x = 2k, and we can find an integer l so
that y = 2l.
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Calculate:

x+ y = 2k + 2l

= 2(k + l)

Since k + l is an integer, by definition of even, x+ y is even. □ □
Example 3.29.3 Prove: an odd integer plus 2 is odd.

Let x be an integer. Assume x is odd. Hence, by the definition of odd, we
can find an integer k such that x = 2k + 1

Calculate:

x+ 2 = (2k + 1) + 2

= 2(k + 1) + 1

Thus, since k + 1 is an integer, by definition of odd, x+ 2 is odd. □ □
Example 3.29.4 Prove: if 5 divides x and 5 divides y then 5 divides x+ y

Let x and y be integers. Assume 5 divides x and 5 divides y. Hence, by
the definition of divides, we can find an integer k so that x = 5k and we can
find an integer l so that y + 5l

Calculate:

x+ y = 5k + 5l

= 5(k + l)

Since k + l is an integer, by definition of divides, 5 divides x+ y.
Thus, by direct proof, if 5 divides x and 5 divides y, then 5 divides x + y.

□ □
Example 3.29.5 Prove: If 5 divides x− 1 and 5 divides y− 4 then 5 divides
x+ y.

Let x and y be integers. Assume divides x − 1 and 5 divides y − 4. By
definition of divides, we can find an integer k such that x−1 = 5k By definition
of divides, we can find an integer m such that y − 4 = 5k.

Calculate:

x+ y(x− 1) + (y − 4) + 5

+ 5k + 5m+ 5

+ 5(k +m+ 1)

Since k +m+ 1 is an integer, by definition of divides, 5 divides x+ y
Thus, by direct proof, if 5 divides x− 1 and 5 divides y − 4 then 5 divides

x+ y. □ □
Example 3.29.6 Prove: For all integers a, b, and c if a divides b and a divides
c then a divides b− c

Let a, b, and c be integers. Assume a divides b and a divides c. By the
definition of divides, we can find an integer h so that b = ah and an integer d
so that c = ad.

calculate

b− c = ah− ad

= a(h− d)

Since h − d is an integer, by definition of divides, a divides b − c. Hence by
direct proof, if a divides b and a divides c then a divides b− c. □ □
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3.30 Exercises
1. ∀w, x, y, z ∈ Z prove the following.

(a) if x+ y is even, then x− y is even
(b) if x and y are odd, then x ∗ y is odd
(c) if x is even, and y and z are odd, then (x ∗ y) + z is odd
(d) if x and y are even then xy is divisible by 4.
(e) if x and y are odd then x+ y is even.
(f) if x and y are even then 3x− 5y is even.
(g) if x is odd then x+ 2 is odd
(h) if x|y then x|yz
(i) if x|y and w|z then xw|yz
(j) if x is odd then x2 + 1 is even
(k) If x and y are even, then 4|xy
(l) If x|y and z|w then xz|yw

2. ∀a, b, c ∈ Z, prove the following with techniques from Section 3.28, p. 44

(a) If 5|(a− 2) and 5|(b− 3) then 5|(a+ b) and 5|(a− b+ 1).
(b) If 7|a then 7 does not divide b or 7|(a+ b).
(c) If a is even or 4|b then 4|(2a · b).
(d) 2x− 1 is odd
(e) x2 + x+ 3 is odd

3. Suppose that you would use a direct proof if you were to prove the fol-
lowing statements. For each only write ” the beginning ” and ” the end”

(a) For every real valued function f , if f is differentiable then f is
continuous.

(b) For all slompins, a, if a is an insteredment then a2 − 5 is flooxin.
(c) If m is an annsubmir and p is a curric-fac then 3m − 5p + 1 is a

divisper.
(d) For every two integers x and y, if x is threeven and y is thud, then

x+ y + 2 is thodd.



Chapter 4

Indirect Proofs

The students go-to proof is most commonly the direct proof, yet there are
many methods of proving that do not involve this method, they are broadly
described as indirect proofs. In this chapter we will go through a few examples.

4.1 Our Assumptions
In this chapter you can assume anything you had in Section 3.2, p. 33. We also
include a few more defintitons for this chapter.
Definition 4.1.1 Common Divisor. ∀a, b, c ∈ Z, all non-zero, we call c a
common divisor of a and b iff c divides a and c divides b. ♢
Definition 4.1.2 Greatest Common Divisor. ∀a, b, c ∈ Z, all non-zero,
we call c the greatest common divisor of a and b, denoted c = GCD(a, b)
iff

1. c is a common divisor of a and b

2. every common divisor of d ∈ Z of a and b has the property d ≤ c. (every
other divisor is smaller)

♢
Definition 4.1.3 Rational. x ∈ Q iff ∃p, q ∈ Z with q ̸= 0 such that x =
p
q and GCD(p, q) = 1 ♢

Definition 4.1.4 1-d Integer Cone. For any integers x1, x2, ..., xn for some
natural number n we say an integer y is in the 1-d integer cone formed by
x1, x2, ..., xn if and only if there exists integers a1, a2, ..., an so that

y = a1x1 + a2x2 + ...+ anxn

♢

4.2 Contrapositive
This first example of an indirect proof is quite close to the indirect proof. It
takes some of our ingenuity from Section 1.13, p. 14 and puts it to work.

50
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4.3 What is a Proof by Contraposition?
A proof by contraposition uses (of course) the contraposition from Section 1.13,
p. 14

[P =⇒ Q] ≡ [(∼ Q) =⇒ (∼ P )]

So that we can prove P =⇒ Q by instead proving (∼ Q) =⇒ (∼ P ). To
prove this equivalent statement we will use direct proof. We summarize this
in the following.

Proof by Contrapositive of P =⇒ Q.

Assume ∼ Q
...
Therefore ∼ P
Thus P =⇒ Q

Again, the title of the text becomes clear:
Beginning -- Assume ∼ Q
Muddle -- ...
End -- Therefore ∼ P

4.4 First Example of Contrapositive
For our first example, just as in Section 3.4, p. 34, we will give as many gory
details as we can think of to help the eager student of proofs.

Prove: ∀m ∈ Z if m2 is odd, then m is odd.
Before we begin any proof we sing our song (play-along):
”What’s the P?”1. m2 is odd
But... for this question we need to really know the ∼ P :
m is not odd odd
”What’s the Q?”2. m is odd
But... again... for this question we need to really know the ∼ Q:
m2 is not odd odd
”What’re the definitions?”3. Odd and even! (found in Section 3.3, p. 34)
”Now, what to do?”4. Proof by contraposition - because we are trying to

learn itThe Breakdown of the original:

∀m ∈ Z if m2 is odd then m is odd

The Breakdown of the contrapositive:

∀m ∈ Z if m is not odd then m2 is not odd
Note 4.4.1 When first getting used to the contrapositive students have at
times made the mistake of negating the beginning quantifier which in this case
would be ∃m ∈ Z. Be careful as the statement actually has the form ∀m ∈ Z
R(m) where

R(m) : if m2 is odd then m is odd
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4.5 The Beginning
Just like before, ”shovel off” the beginning quantifier

∀m ∈ Z

using the guidance of Figure 2.5.1, p. 31 by choosing an arbitrary element, with
language like:

• Let m be an integer

• Choose an arbitrary integer m

• Pick an integer m

• Take any integer m of your choice

• Let m be a freely chosen integer

• Assume m is an integer, chosen arbitrarily

• Designate an integer m of arbitrary selection

• Grab yerself any ol’ integer, and let it be called m!

• Hark! Select an integer, and let it bear the name m, chosen as thou wilt

• Pick an integer, any integer, and call it m. Doesn’t matter which—it
could be lurking anywhere, but m is the one we’ll follow

• Aye, take m, an integer, any integer, an m of no particular choosing but
of the choosing all the same—floating through the mind like a thought
barely caught, yet caught still: m it is.

Now we take care of our beginning of our proof using this new method of
proof by contraposition, by assuming ∼ Q.

Assume m is not odd.
Now, many of you may be reading this last line yelling with your fist in the

air saying, ”who says not odd, just say even”. Yet, we must of course consult
our allowed assumptions section (Section 4.1, p. 50) and the assumption that
”not odd” is equivalent to ”even” is not one of those!

4.6 The Muddle
As the pain point of even vs odd is not lost to me and it will be helpful to be
able to write proofs without having to prove that not odd is the same as even
every single time. This want to not prove something over and over again, or
to separate a smaller proof from a different result comes up a lot, so when we
want to do this we create a Lemma.
The word Lemma comes from the Ancient Greek �����, (perfect passive ��������)

something received or taken. Thus something taken for granted in an argument.
Lemma 4.6.1 Let y be an integer, then y is either even or odd.

Proof. By the division algorithm (Section 3.2, p. 33) we can find integers q and
r such that 0 ≤ r < 2 such that y = 2q + r. Yet since r is an integer and
0 ≤ r < 2 and the only integers which satisfy this inequality are 0 and 1, we
are left only with y = 2q + 0 = 2q (even) or y = 2q + 1 (odd). ■
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With our assumption that m is not odd and this Lemma in hand we could
use Disjunctive Syllogism (Figure 2.3.1, p. 27) in our proof to write:

Since we assumed that m is not odd by Lemma 4.6.1, p. 52 we can conclude
that m is even.

Now we finally have in our proof that m is even so we can go back to what
we have come accustomed to: using the definitions. Specifically in this example
we could write something like:

Thus by definition of even we can find an integer k such that m = 2k
Then, we could continue following our nose to do the common muddle so

far in this text, and that is to calculate.
Calculate:

m2 = (2k)(2k)

= 2(2k2)

4.7 The End
From the muddle we have that

m2 = 2(2k2)

from the definitoin of even (Definition 3.3.1, p. 34) we can now conclude:
Since 2k2 is an integer, according to the definition of even, m2 is even.
Now this is not exactly what we want to conclude. We want to conclude

that: m2 is not odd so again using Disjunctive Syllogism (Figure 2.3.1, p. 27)
and our newest lemma we could write:

Because we have concluded that m2 is even by Lemma 4.6.1, p. 52 we can
now conclude that m2 is not odd.

Finally, we can write our wrap up sentence!
Hence, by proof by contraposition if m2 is odd then m is odd. □
Now let’s see everything written together in a single spot.

Example 4.7.1 Prove: For any integer m, if m2 is odd, then m is odd.
Let m be an integer. Assume m is not odd. Hence, by Lemma 4.6.1, p. 52

we can conclude that m is even.
By definition of even we can find an integer k such that m = 2k
Calculate:

m2 = (2k)(2k)

= 2(2k2)

Since 2k2 is an integer, according to the definition of even, m2 is even. Because
we have concluded that m2 is even by Lemma 4.6.1, p. 52 we can now conclude
that m2 is not odd.

Hence, by proof by contraposition if m2 is odd then m is odd. □ □

4.8 Contradiction
Our next method for proving is known as proof by contradiction. It is an
extremely powerful example of an indirect proof. It plays off the concept of
the excluded middle, in more plain language a statement is either true of false
and nothing between.
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The excluded middle is also known as the law / principle of the excluded
third, in Latin principium tertii exclusi. Another Latin designation for this
law is tertium non datur or ”no third [possibility] is given”.

4.9 What is a contradiction?
Proof by contradiction is the most different than the direct proof yet. The first
big difference is that before now we have always considered the case where we
were proving P =⇒ Q yet this time we will be only considering proving any
proposition R. This does not mean that we will not use it to prove propositions
in the form of an implication, because we definitely will, it is just that we set
up the proof not separating the implication as we have done before.

Proof by Contradiction of R.

Assume ∼ R
...
Therefore T
...
Therefore ∼ T
Hence T∧ ∼ T which is a contradiction.
Thus R

On first look it might also seem to not follow our title, but of course:
Beginning -- Assume ∼ R
Muddle -- conclude T ... conclude ∼ T
End -- Therefore T ∧ (∼ T ) is a contradiction
This proving method may also not seem to fit immediately into our argu-

ment section (Chapter 2, p. 25). To see how it fits in first notice that before
the conclusion this method is simply the direct proof of the statement

(∼ R) =⇒ [T ∧ (∼ T )]

Yet, this is equivalent to R, to see that consider the following truth table.

R T [T ∧ (∼ T )] (∼ R) =⇒ [T ∧ (∼ T )]

T T F T
T F F T
F T F F
F F F F

Figure 4.9.1
Finally, before we move on, when we want to use contradiction to prove a

statement in the form of P =⇒ Q we will need to assume that ∼ [P =⇒ Q].
So it may be helpful to review how to negate such a statement, using our
techniques from Section 1.14, p. 16

∼ [P =⇒ Q] ≡ [∼ ((∼ P ) ∨Q)] (Rob’s Law)
≡ [∼ (∼ P ) ∧ (∼ Q)] (De Morgan’s)
≡ P ∧ (∼ Q) (double negation)

and hence we have the equivalence:

∼ [P =⇒ Q] ≡ [P ∧ (∼ Q)]



CHAPTER 4. INDIRECT PROOFS 55

4.10 First Example of Proof by Contradiction
For our first example of contradiction we will stick with our safety blanket of
the integers.

Prove: For all integers a and b if a− b is odd then a+ b is odd.
Before we begin any proof we sing our song (play-along):
”What’s the P?”1. a− b is odd
”What’s the Q?”2. a+ b is odd
”What’re the definitions?”3. even (Definition 3.3.1, p. 34) and odd (Defi-

nition 3.3.2, p. 34)
”Now, what to do?”4. Proof by contradiction - so we can try and learn

it!The Breakdown:

∀a, b ∈ Z if a− b is odd then a+ b is odd.

4.11 The Beginning
To begin our proof we first take care of the beginning quantifier. As usual we
will do this by choosing arbitrary integers, that is we will use language like:

Let a and b be arbitrary integers.
Note 4.11.1 Again be careful, even though we will be negating we DO NOT
negate the quantifier!

Now to begin our proof by contraposition we need to Assume ∼ R
But R is not in our song! Yes that’s true, but R is just ”what we want to

prove”. In this example we want to prove if a−b is odd then a+b is odd. So we
will need to assume ∼ (if a− b is odd then a+ b is odd) or using our analysis
above we will:

Assume that a− b is odd yet a+ b is not odd.
Now this is false, and it is our job to confirm that, yet a reader with no

warning might be very alarmed that you began your proof with such a blatantly
false assumption. To quell our reader’s troubled stomach, and let them know
what we’re doing, we can start the sentence with:

For the sake of contradiction...
Or for those more inclined to the classics we can simply at the beginning

of our proof write:
[RAA]
which stands for reductio ad absurdum, that is, ”reduction to absurdity.”

4.12 The Muddle
Next, almost right away we can react almost with knee jerk and play off our
assumption with:

Since we assumed that a+b is not odd, by Lemma 4.6.1, p. 52 we have that
a+ b is even.

Now, again, as if we were to knee jerk we could then apply our definitions
of even (Definition 3.3.1, p. 34) and odd (Definition 3.3.2, p. 34) with language
similar to:

By the definition of odd we can obtain an integer ` so that a− b = 2`+ 1.
As well, by the definition odd (Definition 3.3.2, p. 34) we are able to select an
integer s so that a+ b = 2s.



CHAPTER 4. INDIRECT PROOFS 56

Yet, this is where our quick reactions or just using the definitions we have
sung in our song ends. In other examples we would look to the quintessential Q
as our target to set up a calculation. Unfortunately in a proof by contradiction
we are in search of a brand new proposition (which we have lovingly named T )
further more we also need to find its negation (∼ T ). This search is not always
easy, and where to begin isn’t always clear.

For this example we wandered in the woods and simply added the two
things from our assumption together...

Calculate:

(a− b) + (a+ b) = (2`+ 1) + (2s)

= 2`+ 2s+ 1

= 2(`+ s) + 1

and similar to many proofs that came before this we can conclude that since
`+ s is an integer by the definition of odd, we have that

T : (a− b) + (a+ b) is odd

But, there is of course another way of calculating this sum with no consid-
eration of these newly found integers, ` and s, that is...

(a− b) + (a+ b) = (a+ a) + (b− b) = 2a

yet, since a is an integer by the definition of even we have that (a− b)+ (a+ b)
is even, or in light of Lemma 4.6.1, p. 52 we have:

∼ T : (a− b) + (a+ b) is not odd

Therefore we have stumbled upon our contradiction, our T and not T .

4.13 The End
Now that we have found our contradiction of T ∧(∼ T ) we should make sure to
point out this contradiction just in case our reader missed this, letting everyone
know we have come to the end of our proof by contradiction. We, of course,
can do this by following numerous linguistic paths but we must choose one so:

Yet, (a−b)+(a+b) is an integer and cannot be both even and odd, which is
a contradiction. Thus using proof by contradiction we have successfully shown
that for all integers a and b if a− b is odd then a+ b is odd.

As usual we collect it in our tldr boxes...
Example 4.13.1 Prove: For all integers a and b if a− b is odd then a+ b is
odd.

Let a and b be arbitrary integers. For the sake of contradiction assume that
a − b is odd yet a + b is not odd. Since we assumed that a + b is not odd, by
Lemma 4.6.1, p. 52 we have that a + b is even. By the definition of odd we
can obtain an integer ` so that a − b = 2` + 1. As well, by the definition odd
(Definition 3.3.2, p. 34) we are able to select an integer s so that a + b = 2s.
Calculate:

(a− b) + (a+ b) = (2`+ 1) + (2s)

= 2`+ 2s+ 1

= 2(`+ s) + 1

since `+ s is an integer by the definition of odd, we have that (a− b) + (a+ b)
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is odd. Yet, we can also calculate as:

(a− b) + (a+ b) = (a+ a) + (b− b) = 2a

yet, since a is an integer by the definition of even we have that (a− b)+ (a+ b)
is even, or in light of Lemma 4.6.1, p. 52 we have that (a− b) + (a+ b) is even.

Yet, (a−b)+(a+b) is an integer and cannot be both even and odd, which is
a contradiction. Thus using proof by contradiction we have successfully shown
that for all integers a and b if a− b is odd then a+ b is odd. □

4.14
√
2 is Irrational

This next proof is a proof that I believe every single student in mathematics
should know and love. It is this proof that I learned very early on in my math
career that shaped how I understood mathematics. I would meet people and
tell them ”I’m a math major” and they would say things like ”ugh I always
hated math” and I would tell them ”no, math is not what you think math is.” It
is about truths. For example take an extremely simple shape the right triangle,
literally just put two sticks at a sharp angle and connect the two edges with
another stick. This third stick has a length that is not a fraction of either of
the other sides. Pythagoras went to his grave believing that it must, but we
can show beyond a shadow of a doubt it is not.

Before we jump into that proof it will be helpful to have a lemma that we
can call on, in all honesty to shorten our work load (what lemma’s are best
for).

Lemma 4.14.1 If 2 divides m2 then 2 divides m

Proof. Let m be an integer. We will prove this using contraposition, that is we
will assume 2 does not divide m, thus by Lemma 4.6.1, p. 52 m is odd. Hence
we can find an integer k such that m = 2k + 1.
Calculate:

m2 = m ·m
= (2k + 1)(2k + 1)

= 4k2 + 4k + 1

= 2(2k2 + 2k) + 1

Since 2k2 + 2k is an integer, by definition of odd, m2 is odd, hence by
Lemma 4.6.1, p. 52 m2 is not even. Thus by proof by contraposition, if 2
divides m2 then 2 divides m. ■

Prove:
√
2 is irrational.

Before we begin any proof we sing our song, although it is a little different
when we’re using contradiction (play-along):

”What’s the P?”1.
√
2 is irrational

”What’s the Q?”2. There is no Q this time!
”What’re the definitions?”3. Rational, relatively prime, and divides (cre-

ate reference here!)
”Now, what to do?”4. Proof by contradiction - because I said so!
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4.15 The Beginning
For a proof by contradiction we need to begin by assuming what we need to
prove is false, and to remind you this could be jarring to a reader so let them
know what you are doing, for example we could write:

For the sake of contradiction assume that
√
2 is rational. That is, it is not

true that
√
2 is irrational

4.16 The Muddle
Now, we continue with our song by applying the definitions we can, per the
definition of rational (Definition 4.1.3, p. 50), we can find two integers p and q
so that

√
2 = p

q and
T : GCD(p, q) = 1

Next, we will do exactly what any good calculus student would do and that is
”get-rid-of” that square root.

Calculate:

square both sides: 2 =
p2

q2

multiply both sides by q2 : 2q2 = p2

But, q2 is an integer, thus by the definition of even, p2 is even. Hence, by
Lemma 4.14.1, p. 57 we can conclude that p is even

Thus, by the definition of even we can find an integer m so that p = 2m.
Now, we can play our common replacement game.
Calculate again:

2q2 = (2m)2

= 4m2

Divide both sides by 2 q2 = 2m2

But m2 is an integer, so, by definition of even, q2 is even, and again by
Lemma 4.14.1, p. 57, q is even.

Since 2 | p and 2 | q, 2 is a common divisor, and thus by definition of
greatest common divisor (Definition 4.1.2, p. 50) we have that GCD(p, q) ≥ 2,
yet this means that

∼ T : GCD(p, q) ̸= 1

4.17 The End
So now that we have found our contradiction T ∧ (∼ T ) we are done, but just
incase the reader missed this contradiction as you unwrapped it, lets put it all
in one place.

Thus we have shown GCD(p, q) = 1 and GCD(p, q) ̸= 1 which is a contra-
diction. Thus by proof by contradiction, we have shown that

√
2 is irrational.

Now let’s see everything written together in a single spot.

Example 4.17.1 Prove:
√
2 is irrational.

For the sake of contradiction assume that
√
2 is rational. That is, it is not

true that
√
2 is irrational. By the definition of rational (Definition 4.1.3, p. 50),



CHAPTER 4. INDIRECT PROOFS 59

we can find two integers p and q so that
√
2 = p

q and GCD(p, q) = 1
Calculate:

square both sides: 2 =
p2

q2

multiply both sides by q2 : 2q2 = p2

But, q2 is an integer, thus by the definition of even, p2 is even. Hence, by
Lemma 4.14.1, p. 57 we can conclude that p is even

Thus, by the definition of even we can find an integer m so that p = 2m.
Calculate again:

2q2 = (2m)2

= 4m2

Divide both sides by 2 q2 = 2m2

But m2 is an integer, so, by definition of even, q2 is even, and again by
Lemma 4.14.1, p. 57, q is even.

Since 2 | p and 2 | q, 2 is a common divisor, and thus by definition of
greatest common divisor (Definition 4.1.2, p. 50) we have that GCD(p, q) ≥ 2,
yet this means that GCD(p, q) ̸= 1

Thus we have shown GCD(p, q) = 1 and GCD(p, q) ̸= 1 which is a contra-
diction. Thus by proof by contradiction, we have shown that

√
2 is irrational.

□

4.18 Biconditional Proofs
Proofs of statements with a biconditional are ubiquitous in mathematics. As
you have seen all of our definitions are biconditional statements. We use the
biconditional to me mean equivalent. These equivalences in future math classes
give tools for proving conditions without working to more intuitive definitions,
instead by giving more usable ones.

You can prove biconditionals in many ways; the one we will take time to
examine the what I tell my students is the ”safe way”. It is the two-way proof.

Two-Way proof of P ⇐⇒ Q.

Prove: P =⇒ Q
Prove: Q =⇒ P
Therefore, P ⇐⇒ Q

That this proof method is valid follows from the fact that the following is
an equivalence:

[P ⇐⇒ Q] ≡ [(P =⇒ Q) ∧ (Q =⇒ P )]

to verify this equivalence we have the following truth table.

P Q P =⇒ Q Q =⇒ P [P =⇒ Q] ∧ [Q =⇒ P ] P ⇐⇒ Q

T T T T T T
T F F T F F
F T T F F F
F F T T T T

Figure 4.18.1
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For our next examples we spare the reader the in-depth treatment as it is
simply two direct proofs.
Example 4.18.2 Prove: a is odd if and only if a+ 1 is even.
Proof. Let a be an integer
[ =⇒ ] (if a is odd then a+ 1 is even)
Assume a is odd. Hence, by definition of odd (Definition 3.3.2, p. 34) we can
find an integer k so that a = 2k + 1
Calculate

a+ 1 = 2k + 1 + 1

= 2k + 2

= 2(k + 1)

Since k + 1 is an integer, by definition of even, a + 1 is even. Hence by direct
proof, if a is odd then a+ 1 is even.
[ ⇐= ] (if a+ 1 is even, then a is odd)
Assume a + 1 is even. Hence, by definition of even we can find an integer m
such that a+ 1 = 2m
Calculate:

a+ 1 = 2m

a = 2m− 1

= 2m− 1− 1 + 1

= 2m− 2 + 1

= 2(m− 1) + 1

Thus, since m− 1 is an integer, by definition of odd, a is odd. Thus by direct
proof if a+ 1 is even, then a is odd.
Since we showed by direct proof that if a is odd then a+1 is even and if a+1
is even, then a is odd, then a is odd if and only if a+ 1 is even.□ ■

□
Example 4.18.3 Prove: For any integer a; a is odd if and only if a3 is odd.
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Proof. Let a be arbitrary integer.
[ =⇒ ] (if a is odd then a3 is odd)
Assume that a is odd, by the definition of odd (Definition 3.3.2, p. 34) we can
find an integer k so that a = 2k + 1. Now calculate:

a3 = (2k + 1)3

= (2k + 1)(2k + 1)(2k + 1)

= (4k2 + 4k + 1)(2k + 1)

= 8k3 + 12k2 + 6k + 1

2(4k3 + 6k2 + 3k) + 1

since (4k3 + 6k2 + 3k) is an integer a3 is odd.
[ ⇐= ] (if a3 is odd then a is odd.)
For the sake of contraposition assume that a is not odd, thus by Lemma 4.6.1,
p. 52 we have that a is even. By the definition of even we can find an integer t
so that a = 2t. Now calculate:

a3 = (2k)3 = 8k3 = 2[4k3]

since 4k3 is an integer, we can conclude a3 is even, thus by Lemma 4.6.1, p. 52
we have that a3 is not odd. Therefore by contraposition we have that if a3 is
odd then a is odd. ■

□
There is another method for proving an if and only if statement it is not

recommended for the student who is just starting their proving journey, but
for completeness I would be remiss if I did not include it.

One-Way Proof of P ⇐⇒ Q.

P iff T1

T1 iff T2

...
Tn−1 iff Tn

Tn iff Q

The reason I warn beginning students away from this is that too often
students get it in their head that the faster way is better, in calculus they
see the limit definition for the derivative then learn the power rule and say to
themselves well I’m never going back to the limit.

Again for the sake of completion we provide an example, the diligent hard
working student will do their best to see why a backwards proof would be
boring.

Example 4.18.4 Prove: For any two integers a and b; a2 < −b2 if and only
if (a− b)2 < −2ab

Proof. Let a and b be arbitrary integers, not that
a2 < −b2

if and only if
a2 + b2 < 0
if and only if
a2 + b2 − 2ab < −2ab
if and only if
(a− b)2 < −2ab
Therefore a2 < −b2 if and only if (a− b)2 < −2ab ■
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□

4.19 Proof by Exhaustion
Our next proof method is not really a standalone method; other methods
will need to accompany it. We will introduce it using the direct proof as the
accompaniment. Proof by cases can also be viewed as specific example of
Section 3.28, p. 44.

4.20 What are Cases?
Unlike the example in Section 0.6, p. 3 where the are an unlimited amount of
integers to choose from, sometimes we have a finite and more tenable collection
of possibilities than we could actually check or prove in each of these situations.

The following is the basic shape of a proof by cases.

Proof by Cases.

Case 1: a proof of the first case
Case 2: a proof of the second case
...
Case n: a proof of the nth case

At its most basic a proof by cases is an instance of proofs ”Assuming an
Or” from Section 3.28, p. 44 where one is tasked to prove (P ∨ R) =⇒ Q,
then we would split the problem into proving P =⇒ Q as our first case and
then R =⇒ Q as our secondcase. For examples of this the reader is reffered
to Section 3.28, p. 44.

Another common place proof by cases comes up are when we are trying to
prove propositions in the form of:

∀x P (x)

for some predicate P (x). There are many common places that proof by cases
in the previous form come up, for example the following:

• ∀x ∈ Z we have either x is even or x is odd.

• ∀x, y ∈ Z either x|y or x|(y − r) for some integer 0 < r < |x|

• ∀x ∈ R either x ≥ 0 or x < 0

We have already proven that the first point is true in Lemma 4.6.1, p. 52.
For the second point, a more general result, we provide the following lemma.
Lemma 4.20.1 For any two integers x and y, there exists an r ∈ Z such that
0 ≤ r < |x| and x|(y − r)

Proof. Let x and y be integers. By the division algorithm from Section 3.2,
p. 33 we can find a q, r ∈ Z such that 0 ≤ r < |x| and y = qx + r. Hence
subtracting both sides by r we get y − r = qx since q is an integer by the
definition of divides (Definition 3.3.3, p. 34) we have that x|(y − r). ■
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4.21 Exhaustive Examples
We now include some examples, the first one is an example of breaking into
the cases of even and odd.
Example 4.21.1 Prove: for any integer a, a(a+ 1) is even.
Proof. Let a be an integer. a is either even, or odd.
Case 1: Assume a is even.
Hence by definition of even, we can find an integer k such that a = 2k.
Calculate:

a(a+ 1) = 2k(2k + 1)

= 4k2 + 2k

= 2(2k2 + k)

Thus, since k2 + k is an integer, by definition of even, a(a + 1) is even. Thus
by direct proof, if a is even then a(a+ 1) is even.
Case 2: Assume a is odd. Thus by definition of odd, we can find an integer
m such that a = 2m+ 1
Calculate

a(a+ 1) = (2m+ 1)(2m+ 1 + 1)

= (2m+ 1)(2(m+ 1))

= 2[(2m+ 1)(m+ 1)]

Thus since (2m + 1)(m + 1) is an integer, according to the definition of even,
a(a+ 1) is even. Thus by direct proof if a is odd then a(a+ 1) is even.
Thus since case 1 and case 2 hold, by proof by cases, and by direct proof,
a(a+ 1) is even. □ ■

□
Example 4.21.2 Prove: for any integer n, if n is odd, then there exists an
integer j so that n = 4j − 1 or n = 4j + 1



CHAPTER 4. INDIRECT PROOFS 64

Proof. Let n be an integer. Assume n is odd. By definition of odd we can find
an integer m such that n = 2m+ 1
Case 1: Assume m is even. By definition of even we can find an integer j such
that m = 2j.

n = 2m+ 1

= 2(2j) + 1

= 4j + 1

Hence case 1 holds by direct proof.
Case 2: Assume m is odd. Thus by definition of odd we can find an integer k
so taht m = 2k + 1
Calculate:

n = 2n+ 1

= 2(2k + 1)

= 4k + 3

= 4k + 4− 2

= 4(k + 1)− 1

Hence case 2 holds by direct proof.
Thus, since case 1 and case 2 hold, by proof by cases, if n is odd, then we can
find an integerj so that n = 4j − 1 or n = 4j + 1 ■

□
Example 4.21.3 Prove: For every integer a, if 3|a2 then 3|a.
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Proof. Let a be an arbitrary integer. For the sake of contrapositive assume that
3 does not divide a. By Lemma 4.20.1, p. 62 since the only numbers greater
than zero and strictly less than 3 are 1 and 2 either 3|(a− 1) or 3|(a− 2)
Case 1: Assume 3|(a− 1).
By definition of divides we can find an integer k so that a− 1 = 3k, hence by
adding 1 to both sides of the equation we get a = 3k + 1. Now calculate:

a2 = (3k + 1)2

= 9k2 + 6k + 1

= 3(3k2 + 2k) + 1

Hence a2−1 = 3(3k2+2k). Since 3k2+2k is an integer by definition of divides
3|(a2 − 1) thus by Lemma 4.20.1, p. 62 we have that 3 does not divide a2

Case 2: Assume 3|(a− 2).
By definition of divides we can find an integer t so that a − 2 = 3t, hence by
adding 2 to both sides of the equation we get a = 3t+ 2. Now calculate:

a2 = (3t+ 2)2

= 9t2 + 12t+ 4

= 9t2 + 12t+ 3 + 1

= 3(3t2 + 4t+ 1) + 1

Hence a2 − 1 = 3(3t2 + 4t+ 1). Since 3t2 + 4t+ 1 is an integer by definition of
divides 3|(a2 − 1) thus by Lemma 4.20.1, p. 62 we have that 3 does not divide
a2

Therefore by proof by cases 3 does not divide a2, and hence by proof by con-
traposition if 3|a2 then 3|a. □ ■

□

4.22 Existential Proofs
In this section we will we discuss some proofs surrounding the existential quan-
tifier. We begin by explaining the basics of proving statements that involve an
existential.

Proving ∃x ∈ U P (x).

Produce an actual candidate c ∈ U
show P (c) is true
Therefore ∃x ∈ U P (x)

It’s the old saying of just ”show me”. Proving existentials in this manner
come up in your future algebra and analysis courses repeatedly as some of their
most important concepts are defined with an exists. The following example
is perhaps not the most enlightening but it does serve the purpose of a first
example.

Example 4.22.1 Prove: There exists a rational number x such that x+ 3
4 = 2
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Proof. I now present for your consideration the rational number:

5

4

One can see that this is indeed a rational number as both 5 and 4 are integers
and GCD(5, 4) = 1 thus it satisfies the definition of a rational number (Defini-
tion 4.1.3, p. 50). To see that this rational number indeed does the job for our
statement notice that

5

4
+

3

4
=

5 + 3

4

=
8

4
= 2

therefore there truly does exist a rational number x so that x+ 3
4 = 2 ■

□
For our next example we will dig a little deeper into the existential proof

in more of a mock experience to your future courses. But first, we will need
to take advantage of the following lemma, which we present with proof here,
even though the proof does not involve an existential.

Lemma 4.22.2 For all positive integers a and b if a|b then a ≤ b

Proof. Let a and b be positive integers. For the sake of contradiction assume
that a|b and b < a. By the definition of divides (Definition 3.3.3, p. 34) we can
find an integer k so that b = ak, now since b < a then b = 0 · a+ b where 0 is
the quotient and b is the remainder satisfies the division algorithm (Section 3.2,
p. 33), yet since both a and b are positive the k also satisfies the condition of
quotient. This is a contradiction as the quotient from the division algorithm
is unique. □ ■
Example 4.22.3 Prove: For any integers x and y, there exists a smallest
positive integer that is in the 1-d integer cone formed by x and y.
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Proof. Let x and y be integers, next we need to provide an integer which is
smallest among all integers in the 1-d integer cone formed by x and y. We
present for your scrutiny the integer

d = GCD(x, y)

Now, we are left with the task to show that d is the smallest positive integer
in the 1-d integer cone formed by x and y. To say this another way we need
to prove that the greatest common divisor of x and y is the smallest positive
integer in the 1-d integer cone formed by x and y.
To prove this let d be the smallest positive integer in the 1-d integer cone
formed by x and y (it will be our goal to show it is our d from above). By the
definition of the 1-d integer cone (Definition 4.1.4, p. 50) we can find integers
s and t such that

d = sx+ ty

To show that this smallest positive integer is the greatest common divisor by
the definition of greatest common divisor (Definition 4.1.2, p. 50) first it must
be a divisor of both x and y.
By the division algorithm (Section 3.2, p. 33) we can find positive integers q
and r such that 0 ≤ r < d such that x = qd+ r yet by substituting in the form
of d above we see x = q(sx+ ty) + r and hence

r = x− q(sx+ ty) = (1− qs)x+ (qt)y

and since (1− qs) and qt are both integers by the definition of 1-d integer cone,
then r is in the 1-d integer cone formed by x and y yet we assumed d was
the smallest positive one, so because we assumed 0 ≤ r < d then r = 0 hence
a = qd and since q is an integer by the definition of divides d|x.
similarly by the division algorithm (Section 3.2, p. 33) we can find positive
integers z and w such that 0 ≤ w < d such that y = zd+w yet by substituting
in the form of d above we see y = z(sx+ ty) + w and hence

w = y − z(sx+ ty) = (zs)x+ (1− zt)y

and since (1−zt) and zs are both integers by the definition of 1-d integer cone,
then w is in the 1-d integer cone formed by x and y yet we assumed d was the
smallest positive one, so because we assumed 0 ≤ w < d then w = 0 hence
y = zd and since z is an integer by the definition of divides d|y.
Therefore by the definition of common divisor (Definition 4.1.1, p. 50) d is a
common divisor of x and y.
By the definition of greatest common divisor (Definition 4.1.2, p. 50) we still
need to show that any other divisor is smaller than d. To do this let c be a
common divisor of x and y. By definition of common divisor both c|x and c|y
hence by definition of divides (Definition 3.3.3, p. 34) we can find integers a
and b so that x = ac and y = bc thus substituting in our above relations we
have

d = sac+ tbc = (sa+ tb)c

and since sa + tb is an integer by the definition of divides c|d. Finally by
Lemma 4.22.2, p. 65 we have c < d as desired.
Since we have verified both parts in the definition of greatest common divisor
we have that

d = GCD(x, y)

□ ■
□
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Next, we will discuss unique existence. This quantifier adds a step to our
proving method as we are not simply saying there is an element out there we
are saying there is only one of those elements. Uniqueness is a common theme
in algebra and analysis as well.

Proof of ∃!x ∈ U P (x).

Prove ∃x ∈ U P (x)
Assume you have a ∈ U and b ∈ U so that P (a) is true and P (b) is

true.
Prove a = b

For our first example we will explore a common theme from your future
algebra courses.
Example 4.22.4 Prove: There exists a unique integer, a, so that for all
integers b

a+ b = b

Proof. The integer that we submit for your deliberation is:

0

To see that zero works, to satisfy the existence, notice that when we choose an
arbitrary integer x that: 0 + x = x.
Now to prove the uniqueness, assume that we have two integers c and d so that
for any integer b both c+ b = b and d+ b = b. So in particular

c = d+ c = c+ d = d

that is c = d.
Therefore, we have shown that there exists an integer with the desired property
and that this integer is unique. □ ■

□

4.23 Exercises
1. Using contraposition for the following prove for every integer a that

(a) if a is even then a+ 1 is odd
(b) if a is odd then a+ 2 is odd
(c) if a2 is not divisible by 4 then a is odd

2. Using contradiction for the following prove for any integer a that

(a) if ab is odd then both a and b are odd
(b) if a is odd then a+ 1 is even.

3. Using proof by cases for the following prove for any integer a that

(a) If 5 does not divide a then 5 does not divide a2

(b) a(a− 1) is even
(c) 2a− 1 is odd
(d) a2 + a+ 3 is odd
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4. Prove the following biconditional statments for any integers a, b, c, and
d (you are allowed to divide for this exercise)

(a) a is odd if and only if a+ 1 is even
(b) ac|bc if and only if a|b
(c) a+ c = b and 2b− a = d if and only if a = b− c and b+ c = d

5. Prove the following statements involving existential

(a) For any integer a there exists an unique integer b so that a+ b = 0

(b) There exists a rational number x such that x+ 3
2 = 4

6. Prove that
√
3 is not a rational number.



Chapter 5

Set Theory

Now in this second half of the course we move our adventure of exploring proofs
by diving deeper into the new playground of naive set theory. This adventure
will begin by considering sets of numbers, toys, animals and all sort of creations.
To gently introduce our students to the proofs involved with such creatures we
will provide the (now) familiar sets of numbers.

While indeed we gave the reader the minimum needed from set theory to
play with quantifiers in Section 1.16, p. 17 in this chapter we essentially start
over re-defining it all.

5.1 What is a Set?
While set theory has been rigorously defined axiomatically, in this course we
choose to only skim the surface using a whole lot of intuition and the propo-
sitional logic that we developed in Chapter 1, p. 4. The main object of study
in set theory is the set. Intuitively a set is a magic bag filled with stuff... or
nothing... Georg Cantor the russian mathematician, credited as the father of
set theory, first defined the set as:

A set is a gathering together into a whole of definite, distinct objects of our
perception or of our thought—which are called elements of the set.

We include a much more boring description.
Definition 5.1.1 Set. A set is a well defined collection of objects. ♢
Definition 5.1.2 Element. The objects in a set are called elements or
members. ♢

We will most often denote sets with capital letters like: A, B, C etc. Fur-
thermore we will denote elements with lowercase letters like a, b, x, etc.

∈ Notation.

To indicate that x is an element of a set A we will write:

x ∈ A

To indicate that x is not an element of a set A we will write:

x ̸∈ A

Membership to a set is a proposition as it is either true or false.

70
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To define a specific set we can simply list all of it’s elements. To do so
we encompass the elements we wish to include between braces: { and } and
separate the elements with a comma.
Example 5.1.3 Consider the following set A

and note the following example of the membership notation.

You can also indicate the negation of membership

□
Note 5.1.4 A set has no order, and you cannot repeat elements.
Definition 5.1.5 Cardinality. For a set A we call the cardinality or order
of A is the number of elements in the set A, denoted as

|A|

♢
In this course we will only mention this concept when the sets are finite,

when sets are infinite the cardinality of a set flourishes a beautiful theory, one
which we will not dive into in this text but is quite amazing.
Example 5.1.6 Consider the following set

We see that the number of elements in the set A is 4 hence, |A| = 4. □
Sets come in many different shapes and flavors and throughout your math-

ematical career you will need to become extremely comfortable with sets, and
depending on the discipline you will either love or hate the following set, but
you will never deny that it is perhaps one of the most important sets.
Definition 5.1.7 Empty Set. We will call the set containing no elements
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the empty set, we denote the empty set as ∅, that is

∅ = {}

♢
As there are no elements in ∅, therefore |∅| = 0, as well, to the the disjoy

of all combinatorists, the statement x ∈ ∅ is a contradiction (that is always
false).

5.2 Set Builder Notation
Membership is the defining characteristic of a set, thus it is helpful to define
a set by conditions for membership. One way to do that we call set-builder
notation.

This is our way of defining membership a ∈ {x | P (x)} if and only if P (a)
is true.
Example 5.2.1 We include some sets defined with set-builder notation.

(A) {x ∈ Z | − 5 < x < 5}

(B) {y ∈ Z | y = 3a+ 1 for some a ∈ Z}

(C) {z ∈ Q | |z| <
√
7}

□
In Example 5.2.1, p. 71 (B) we defined the condition with a quantifier,

specifically ∃a ∈ Z. This is an extremely common use-case in mathematics. I
bring this up here to warn the student that this is perhaps the most common
quantifier to be hidden. That is, we would most likely see it presented as:

{y ∈ Z | y = 3a+ 1, a ∈ Z}

To defend the mathematician which chooses to present it in this manner, we
mostly study objects with a well defined and unique multiplication, that is
there is only one unique integer a that satisfies y = 3a+ 1 for a given y.

Adding to the possible confusion yet important to understand, for this same
set it is true that

∀k ∈ Z (3k + 1) ∈ {y ∈ Z | y = 3a+ 1, a ∈ Z}

that is, by defining a set with an existential condition we are actually defining a
universal relationship. To top it off we often do not even mention the universal
relationship and hide the existential one, all in the sake of brevity and the word
obvious.
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5.3 Comparing and Combining Sets
Now we will begin comparing sets. Our first tool of comparison is the concept
of subset.
Definition 5.3.1 Subset. We say that the set A is a subset of a set B,
denoted A ⊆ B, if and only if for all x ∈ U ,

x ∈ A =⇒ x ∈ B

♢
To say that in more plain language, A ⊆ B means B contains all the

elements of A, it is noteworthy that B may contain more than just those
elements from A.
Example 5.3.2 Consider the sets

notice that every element from A can also be found in B, that is A ⊆ B.
□

Example 5.3.3 Define the sets

A = {3, 6, 9, 12, 15}

B = {x ∈ Z | x = 3a for some a ∈ Z}

Notice that A ⊆ B since

3 =3 · 1
6 =3 · 2
9 =3 · 3
12 =3 · 4
15 =3 · 5

that is, every element of A is also an element of B. □
When a set A has exactly the same elements of a set B we say those set

are equal. The following definition makes this more rigorous
Definition 5.3.4 Equal Sets. We say that a set A is equal to a set B,
denoted A = B, if and only if both

A ⊆ B

and
B ⊆ A

or equivalently by:
∀x ∈ U x ∈ A ⇐⇒ x ∈ B

♢
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Sets are equal exactly when you would think they are, when they are the
same set. Yet, as hopefully you have been piecing together in this journey, to
prove things like ”they are the same” we need a bit more rigor and propositional
guidance to prove truth. Shortly we will venture into the world of proving with
these sets, yet lets take a little time not just to build rigorous definitions but
to build our intuition further.

We now venture into combining sets, that is making new sets given one or
more sets.
Definition 5.3.5 Union. We define the union of two sets A and B, denoted
A ∪B as the set:

A ∪B = {x | x ∈ A ∨ x ∈ B}

♢
As is done for a set, we must define what it takes for membership to this

set. For the union membership is allowed when membership of either A or B
is established. In more common vernacular, this says that the union of two
sets is anything from either set.
Example 5.3.6 Consider the following sets

then the union of A and B is as follows

□
Example 5.3.7 Define the sets

A = {x ∈ R | 0 ≤ x < 10}

B = {x ∈ R | − 10 < x < 0}

Thus the union of these two sets is

A ∪B = {x ∈ Z | − 10 < x < 10}

since any real number between -10 and 10 are either included between 0 and
10 or between -10 and 0. □

Another way to combine sets is to consider only the elements in which they
share, this is our next definition.
Definition 5.3.8 Intersection. The intersection of two sets A and B,
denoted A ∩B, is defined as

A ∩B = {x | x ∈ A ∧ x ∈ B}



CHAPTER 5. SET THEORY 75

♢
Again, as these are sets, we must define what it means to be a member

of this set. For the intersection membership is defined for those elements that
have membership to both the sets A and B. Or in other words, the intersection
only has the things that are shared between two sets.
Example 5.3.9 Consider the following sets

therefore the intersection of these two sets are

Notice that elements in the intersection are exactly those that show up in
both A and B. □
Example 5.3.10 Define the sets

A = {x ∈ Z | 0 < x ≤ 10}

B = {x ∈ Z | x = 2y for some y ∈ Z}

Thus the intersection of these two sets is

A ∩B = {2, 4, 6, 8, 10}

since those are the only even integers between 0 and 10 (including 10). □
The last construction showed where two sets were the same yet, now we

explore where they differ.
Definition 5.3.11 Difference. The difference of a set A and a set B,
denoted A−B, is the set defined as

A−B = {x | x ∈ A ∧ x ̸∈ B}

♢
The difference of A and B consists of the things that are in A, but not in

B.
Example 5.3.12 Consider the sets
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thus the set difference of A and B is

notice that the difference is made up only of elements that appear in A yet
do not appear in B. □
Example 5.3.13 Define the sets

A = {x ∈ Z | 0 < x < 10}

B = {x ∈ Z | x = 2y for some y ∈ Z}

Thus the difference of these two sets is

A−B = {1, 3, 5, 7, 9}

since these are there integers between 0 and 10 that are not even. □
To end this section we have been quite flippant on our universe of discourse,

yet with a well defined one we can look at the set difference involving the
universe.
Definition 5.3.14 Compliment. The compliment of a set A in the uni-
verse U , is defined as the following set,

Ac = {x ∈ U | x ̸∈ A}

or
Ac = U −A

♢
The compliment can, perhaps, most simply be stated as everything that is

not in A.
Example 5.3.15 For this example consider the universe of discourse as the
integers, U = Z, and consider the set of all even numbers, that is the set

A = {x ∈ Z | x = 2y for some y ∈ Z}

Then the compliment of A is all the integers that are not even, or in lieu of
Lemma 4.6.1, p. 52 we have that

Ac = {x ∈ Z | x = 2y + 1 for some y ∈ Z}

□

5.4 Venn Diagrams and Logic of Sets
To understand/describe the relationship between sets we often use a tool known
as Venn Diagrams. In simplest terms a Venn diagram is a drawing repre-
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senting the sets we are considering, we draw a circle for each set, and imagine
the elements are inside the circle. Further, in this section we will use the basic
underpinning of propositional logic to pick apart some logical conclusions from
set theory.
John Venn was an English mathematician that in the 1800’s introduced Eule-

rian Circles, which we now don with his name.

5.5 Venn Diagrams
We now provide some basic examples of Venn diagrams.
Example 5.5.1 A Venn diagram for a singular set A
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□
Example 5.5.2 A Venn diagram for A ⊆ B

□
When we are indicating a specific portion of the Venn diagram we will use

shading, such as the following examples.
Example 5.5.3 A Venn diagram for A ∪B

□
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Example 5.5.4 A Venn diagram for A ∩B

□
Example 5.5.5 A Venn diagram for A−B

□
Example 5.5.6 A Venn diagram for Ac

□
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In this chapter’s exercises (Section 5.26, p. 101) you will be asked to identify
different sets in a Venn diagram. To help the student still attempting to take
a grasp of set theory we give a few more creative examples next.

Example 5.5.7 The set: (A−B)c

Here consider the set that contains A yet not that, that is in B, this is
exactly the part that is not shaded, as it is the compliment. □
Example 5.5.8 The set: (A ∪B)c ∩ C

This time we consider the place which is neither A nor B yet is in C □
Example 5.5.9 The set: (A ∩ C)c ∪B
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In this example consider the set that avoids where A intersects C yet does
include all of B. □

5.6 The Logic of Sets
To the teacher: Be careful in this section... don’t lose them... maybe even

skip or just quickly note these? Or perhaps challenge the brave student, the
student who has been staring deeply into the ripples of the pond to venture
here...

As we have built set theory directly from propositional logic we can ap-
proach some basic properties very similarly to that of Section 1.14, p. 16 and
Chapter 2, p. 25. Now we have the tools to start proving, we begin with the
reason that most people hate the empty set.
Proposition 5.6.1 Let A be a set then

∅ ⊆ A

Proof. To prove this statement, we first fix a universe of discourse U and a
set A. Now we examine the definition of subset; which applied to our scenario
would say, for any x ∈ U

x ∈ ∅ =⇒ x ∈ A

Yet, x ∈ ∅ is a contradiction, that is always false, no matter the element, no
matter the universe of discourse, as ∅ is empty, containing no elements.
So, the proof of this statement falls to the fact that if C is a contradiction then
for any proposition P , the following argument is valid

C

∴ P

Of course this means that C =⇒ P is a tautology, to see this consider the
following truth table.

C P C =⇒ P

F T T
F F T

Figure 5.6.2
■
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To reiterate, it is this contradiction of x ∈ ∅ which really is the sticking
point for the empty set, and why it is always a fringe case that becomes the
dismay of mathematicians world round. Next, we present a few more subset
conditions.
Proposition 5.6.3 Let A, B, and C be sets, then the following are true

(a) A ⊆ A

(b) if A ⊆ B and B ⊆ C, then A ⊆ C

Proof. (a) x ∈ A =⇒ x ∈ A is the argument

P

∴ P

hence we need P =⇒ P to be a tautology, yet

P P =⇒ P

T T
F T

Figure 5.6.4
(b) This one is

P =⇒ Q

Q =⇒ R

∴ P =⇒ R

which is just Hypothetical Syllogism from Figure 2.3.1, p. 27. ■
Next we give a somewhat analogous treatment to that of Theorem 1.13.1,

p. 15, and leave it to the diligent reader to draw the direct comparisons.
Proposition 5.6.5 Let A, B, and C be sets, then the following are true

(a) (Ac)c = A

(b) A ∪B = B ∪A (commutativity)

(c) A ∩B = B ∩A (commutativity)

(d) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (distributivity)

(e) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (distributivity)

(f) A ∩A = A (absorption)

(g) A ∪A = A (absorption)

(h) (A ∪B)c = Ac ∩Bc

(i) (A ∩B)c = Ac ∪Bc

(j) A ∪ (B ∪ C) = (A ∪B) ∪ C (associativity)

(k) A ∩ (B ∩ C) = (A ∩B) ∩ C (associativity)

(l) A ⊆ B iff Bc ⊆ Ac

In a similar fashion the following conditions are the consequences of the
arguments in Figure 2.3.1, p. 27.
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Proposition 5.6.6

(a) A ⊆ A ∪B

(b) A ∩B ⊆ A

These final properties are unique to sets, yet have the same logical progres-
sions as the previous ones.
Proposition 5.6.7

(a) A ∩ ∅ = ∅

(b) A ∪ ∅ = A

(c) A− ∅ = A

(d) ∅ −A = ∅

(e) A ⊆ B if and only if A ∪B = B

(f) A ⊆ B if and only if A ∩B = A

(g) If A ⊆ B then A ∪ C ⊆ B ∪ C

(h) If A ⊆ B then A ∩ C ⊆ B ∩ C

We leave these last ones without proof, nor the challenge for a hard working
reader to try and work it out, but instead we hope the student’s intuition will
guide them.

5.7 First Proofs with Sets
In the previous section we looked at many basic properties of sets. Now we
will venture into some proofs that are more indicative of your future classes,
and return (momentarily) back to the safety of numbers.

We first examine how one would prove a subset to be true.

Proving A ⊆ B.

Let x ∈ A
...
Therefore x ∈ B

The keen-eyed student will notice that this is simply the direct proof applied
to the definition of subset, specifically:

∀x ∈ U x ∈ A =⇒ x ∈ B

We will see many examples of this proving method throughout out the class,
yet before we jump in, I’d like to note for either the instructor or the diligent
student who has been paying very close attention to the journey. I used to try
and teach this by taking away the numbers, and instead using the beginning,
muddle and the end in Section 5.6, p. 80 instead of the now off-handed way
you see presented here, but I believe the students felt like it was too jarring
and then leaned away from subsets and set proofs, which was detrimental to
their learning once we got to abstract algebra. So now I introduce these proofs
with numbers in hopes that you leave the set theory section with the love that
you left from the even and odd proofs.
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5.8 The First Proof
Define the sets

A = {x ∈ Z | x = 6a for some a ∈ Z}
B = {x ∈ Z | x = 2a for some a ∈ Z}

Prove: A ⊆ B
Before we begin any proof we sing our song (play-along):
”What’s the P?”1. x ∈ A

”What’s the Q?”2. x ∈ B

”What’re the definitions?”3. The definition of the sets written directly
above silly goose!

”Now, what to do?”4. A direct proof! (proof of a subset!)

5.9 The Beginning
To begin this proof we follow our procedure above, by choosing an arbitrary
element of the set A, using words in the manner of:

Let s ∈ A

Thats all there is to it, we abscond with a random element of A, then
drudge forward with our journey to show it is a member of B.

5.10 The Muddle
I chose to begin with this example as the muddle is almost identical to most
other of our examples. That is we simply state what it takes for s to belong
to A. From the definition above of the set A, we see in the condition part of
the set-builder notation it tells us that there must be an integer so that s is 6
times this integer (sound familiar?). To invoke this we could write something
like:

By the definition of membership of A, we can produce some integer t so
that s = 6t.

5.11 The End
Now, for the end we need to finally get to the finish line, that is finally conclude
that our element s is indeed a member of B. For this notice that

s = 6t = 2 · (3t)

and since 3 is an integer and t is an integer we have that 3t is an integer and
hence s satisfies the condition to be in B.

Next, we present it all in one place.
Example 5.11.1 Define the sets

A = {x ∈ Z | x = 6a for some a ∈ Z}

B = {x ∈ Z | x = 2a for some a ∈ Z}
Prove: A ⊆ B

Proof:
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Let s ∈ A, by definition of the set A we can find an integer t so that s = 6t,
yet note since 6 = 2 ·3 we have s = 6t = 2 · (3t). Now, since 3 and t are integers
we can conclude 3t is an integer. Therefore by the definition of the set B we
have that s ∈ B □

5.12 More Examples
This is an important concept of your future mathematics courses so we will
now provide a couple more abbreviated examples of subset.
Example 5.12.1 Consider the sets:

A = {x ∈ Z | x = 6a+ 4 for some a ∈ Z}

B = {y ∈ Z | y = 3a+ 1 for some a ∈ Z}

Prove: A ⊆ B

Proof. We begin by selecting a completely arbitrary element of A, which we
will denote as n ∈ A. Applying the condition of membership to A we can find
an integer m such that n = 6m+ 4. By factoring we see that

n = 6m+ 4 = 6m+ 3 + 1 = 3(2m+ 1) + 1

and since 2m + 1 is an integer we see that n satisfies the condition to be a
member of B.
Therefore, we have chosen an arbitrary n ∈ A, and successfully shown that
n ∈ B, hence we have shown that A ⊆ B. ■

□
For our next example we will look at proof involving the intersection (Def-

inition 5.3.8, p. 73).

Example 5.12.2 Consider the sets:

A = {x ∈ Z | x = 2a+ 1 for some a ∈ Z}

B = {y ∈ Z | y = 5a+ 2 for some a ∈ Z}

C = {z ∈ Z | z = 10a+ 7 for some a ∈ Z}

Prove: C ⊆ A ∩B
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Proof. We first choose an arbitrary element of C in attempts to show it also
belongs to A ∩B, name this element x ∈ C.
Using the definition of the set C we see that we can fix a specific s ∈ Z so that
x = 10s+ 7.
Now, to show membership of the intersection, A ∩ B, we need to show that
our element x is both a member of A and that it is a member of B, by the
definition of intersection (Definition 5.3.8, p. 73). Thus we break the remainder
of the proof into two parts.
[Membership of A]
Notice that we can factor

x = 10s+ 7 = 10s+ 6 + 1 = 2(5s+ 3) + 1

and as 5s+3 is an integer we see that x satisfies the conditions to be a member
of A.
[Membership of B]
Similarly, notice that we can again factor

x = 10s+ 7 = 10s+ 5 + 2 = 5(2s+ 1) + 2

and as 2s+1 is an integer we see that x satisfies the conditions to be a member
of B.
Finally, since we have chosen a completely arbitrary element x ∈ C and then
have shown that x ∈ A and that x ∈ B we can conclude that x ∈ A ∩ B,
therefore we have shown that C ⊆ A ∩B. ■

□
Our next example will work through a proof that involves a union (Defini-

tion 5.3.5, p. 73).

Example 5.12.3 Consider the sets

A = {c ∈ Z | c = 6g + 4 for some g ∈ Z}

B = {d ∈ Z | d = 15h− 8 for some h ∈ Z}

C = {f ∈ Z | f = 3j + 1 for some j ∈ Z}

Prove: A ∪B ⊆ C
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Proof. To start the proof we will choose an arbitrary element of A ∪ B, we
will name this random member y ∈ A ∪ B. By the definition of union (Defini-
tion 5.3.5, p. 73) we have that y ∈ A or y ∈ B, thus we split our proof in to
two cases.
[Case 1: y ∈ A]
For this first case, assume that y ∈ A, by the condition defining the set A we
can find an integer t such that y = 6t+ 4. Next, we calculate:

y = 6t+ 4 = 6t+ 3 + 1 = 3(2t+ 1) + 1

since 2t+ 1 is an integer we see that y satisfies the condition to be a member
of C, that is y ∈ C.
[Case 2: y ∈ B]
For this case we will instead assume y ∈ B. This time by the condition defining
the set B we can locate a special integer s so that y = 15s − 8. Now we can
calculate:

y = 15s− 8 = 15s− 9 + 1 = 3(5s− 3) + 1

and since 5s− 3 is an integer we see that, as the condition for membership of
C is satisfied, y ∈ C.
To wrap-up, since we have chosen a random element y ∈ A∪B and have shown
that this same element must have the property that y ∈ C we can conclude
that A ∪B ⊆ C. ■

□
Now we will explore the process of showing when sets are equal.

Definition 5.12.4 Equals. We say that two sets A and B are equal, denoted

A = B

if and only if
A ⊆ B and B ⊆ A

♢
Therefore to prove the statement A = B we must have two proofs, one

proof for A ⊆ B and one proof for B ⊆ A.
Our next couple of examples aim to show this.

Example 5.12.5 Consider the set

X = {x ∈ Z | x = 3g + 2h for some g, h ∈ Z}

Prove: X = Z
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Proof. We will again need to break this proof into two parts.
[Want to Show: X ⊆ Z]
For the first part, let c ∈ X and hence by the definition of the set X we have
that x ∈ Z, therefore X ⊆ Z. (this is of course what many refer to as the easy
part)
[Want to Show: Z ⊆ X]
In this next part, assume m ∈ Z. It is now our objective to show membership
in X, to do such we will need to produce two integers, the way in which we
discovered these integers is irrelevant to the proof, so for the sake of argument,
lets just assume angels whispered it to me in my sleep.
Notice that since m is an integer and −m is an integer, then we can calculate:

3m− 2m = m

and hence by the condition of set X we have that m ∈ X, therefore Z ⊆ X.
To wrap-up, since we have shown that both X ⊆ Z and Z ⊆ X we may conclude
that X = Z. ■

□

5.13 Power Set
The power set includes all the subsets of a given set. To help make this clearer,
we’ll now work through a couple of examples together.
Definition 5.13.1 Power Set. Let A be a set. The power set of A is the
set whose elements are the subsets of A and is denoted P(A)

P(A) = {B | B ⊆ A}

♢
The power set is made up of all the subsets of a given set. Let’s explore

some examples to help make this clear.
Example 5.13.2 Consider the set:

To build the power set, it is customary to begin with the empty set, ∅,
which we know must be a member of the power set from Proposition 5.6.1,
p. 80 we know that ∅ ⊆ A. Hence, ∅ ∈ P(A)

Next, we will of course need all of the singletons, that is all the sets
containing a single element from A

Finally, since for any set A ⊆ A, as any element of A is surely an element
of A, we have A ∈ P(A)

thus the power set is:
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□
Our next example, though a bit more straightforward, uses our familiar

numbers with a slightly larger set to help solidify the concept.
Example 5.13.3 Let’s look at an example of a power set: the power set of
B = {1, 2, 3}.

Just, as in the last example, in every power set we must find the empty set,
that is ∅ ∈ P(B).

Next, we will work through each singleton:

{1} ∈ P(B)

{2} ∈ P(B)

{3} ∈ P(B)

As our set has three elements there are a few subsets which have two ele-
ments this time:

{1, 2} ∈ P(B)

{1, 3} ∈ P(B)

{2, 3} ∈ P(B)

Finally, as B ⊆ B, we have that B ∈ P(B).
Thus the power set of B is:

P(B) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

□
The curious counter, will notice by the procedural way in which we con-

struct these power sets that when we start with finite sets, that they are indeed
easy enough to count.
Theorem 5.13.4 For a finite set A the size of the power set is

|P(A)| = 2|A|

We leave the proof of this to a course in counting, or the studious reader
may work it out themselves.

5.14 First Proof
For our very first proof using the power set we will now shed the numbers and
prove for arbitrary sets A and B.

Prove: A ⊆ B if and only if P(A) ⊆ P(B)
This is a biconditional proof so it is like we are working with two proofs, so

we will use it as such and prove each statement separately.

5.15 Proof of: A ⊆ B =⇒ P(A) ⊆ P(B)

Before we begin any proof we sing our song (play-along):
”What’s the P?”1. A ⊆ B

”What’s the Q?”2. P(A) ⊆ P(B)
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”What’re the definitions?”3. The definition of power set (Definition 5.13.1,
p. 87) and the definition of subset (Definition 5.3.1, p. 72)

”Now, what to do?”4. A direct proof

5.16 The Beginning
To begin, there is nothing fancy we simply assume the ”P” that is we would
write something simple like:

Assume A ⊆ B
Our goal is to prove that P(A) ⊆ P(B), thus we need to prove a subset,

to do this we must choose an arbitrary element of P(A) with language like:
Let x ∈ P(A)
it will be our objective to show that this element x also belongs to P(B).

5.17 The Muddle
I know, we have no numbers what are we to do?

stay calm we have not completely disregarded the mold, usually in the
muddle we invoke some definitions, so let’s do that now, namely the definition
of membership to the power set. We do this with language like:

By definition of the power set of A, we have that x ⊆ A.
As it is our objective to show that this element x also belongs to P(B),

this means we need to show that x is a subset of B. To do this we do so like
any proof of subset (kinda like the one we are in the middle of...) and choose
an random element of x, we can do this with language like:

Choose an arbitrary a ∈ x.
Where to go from here?? Well, right before this we unraveled the fact that

x ⊆ A and hence by defintion of subset we have a ∈ A. We could express this
in our proof with the following language:

Since x ⊆ A and that we have assumed a ∈ x, by the definition of subset
we can make the conclusion that a ∈ A.

Hark! Our very first assumption was ’bout how the fair set A compares to
the set B, more specifically that A ⊆ B, hence in a similar fashion we could
write the following conclusion:

Since we assumed A ⊆ B and since we have discovered that a ∈ A by
definition of subset we can conclude that a ∈ B. Hence, since we chose an
arbitrary element a ∈ x and have shown that a ∈ B as well, by definition of
subset we can conclude x ⊆ B.

5.18 The End
Finally, we have just concluded that x ⊆ B, which is the defining condition for
membership to the power set of B, thus we can conclude:

By defintion of power set since x ⊆ B we have that x ∈ P(B). Therefore
as we chose x ∈ P(A) arbitrarily, by definition of subset we have our desired
result that P(A) ⊆ P(B).

5.19 Proof of: P(A) ⊆ P(B) =⇒ A ⊆ B

Before we begin any proof we sing our song (play-along):
”What’s the P?”1. P(A) ⊆ P(B)
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”What’s the Q?”2. P(A) ⊆ P(B)

”What’re the definitions?”3. The definition of power set (Definition 5.13.1,
p. 87) and the definition of subset (Definition 5.3.1, p. 72)

”Now, what to do?”4. direct proof

5.20 The Beginning
This time to begin, we must assume this new ”P” that is we would write
something simple like:

Assume P(A) ⊆ P(B)
Our goal is to prove that A ⊆ B, thus we need to prove a subset, to do this

we must choose an arbitrary element of A with language like:
Let y ∈ A

5.21 The Muddle
Now, what do we do?!

This time we don’t even have any useful definitions to lean on... all we
know is that A is a set, literally one of the most general objects ever, it can be
anything...

As we take a breath or two, we see that all we really have at this time is
our assumption about power sets. Luckily we have just completed working our
way through our examples of power set and recall that the singletons were one
of the first sets we looked at, and hence we have that:

Since y ∈ A by the definition of subset {y} ⊆ A, thus by the definition
of power set we have that {y} ∈ P(A). Now, since we have assumed that
P(A) ⊆ P(B) by the definition of subset we have that {y} ∈ P(B).

5.22 The End
Given that {y} ∈ P(B) by the definition of power set we can conclude that
{y} ⊆ B, and by the definition of subset, since y ∈ {y} we have that y ∈ B.

Yet, since we have chosen y ∈ A arbitrarily and have shown that y ∈ B by
the definition of subset we can conclude that A ⊆ B as desired. Now that we
have shown that both

A ⊆ B =⇒ P(A) ⊆ P(B)

and that
P(A) ⊆ P(B) =⇒ A ⊆ B

we can conclude that

A ⊆ B ⇐⇒ P(A) ⊆ P(B)

We now give an abbreviated proof in a single location for the ease of the
reader.
Example 5.22.1 Prove: A ⊆ B if and only if P(A) ⊆ P(B)

[ =⇒ ]
Assume A ⊆ B Let x ∈ P(A). Hence by definition of power set, x ⊆ A
By Proposition 5.6.3, p. 81 (b), since x ⊆ A and A ⊆ B we can conclude

x ⊆ B. Thus by definition of power set, x ∈ P(B)
Thus by direct proof, if A ⊆ B then P(A) ⊆ P (B)
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[ ⇐= ]
Assume that P(A) ⊆ P(B). Let y ∈ A By definition of power set, {y} ∈

P (A). Hence by our assumption, {y} ∈ P(B). Hence by our assumption and
the definition of power set, {y} ∈ P(A), hence {y} ∈ P(B). By definition of
subset, since y ∈ {y} then y ∈ B.

Thus by direct and bi-directional proof, A ⊆ B if and only if P(A) ⊆ P(B)
□

5.23 The Natural Numbers
This subsection can be safely skipped, but it is a fun construction using only
the empty set to build the natural numbers, also why I insist that 0 ∈ N.

For this construction we begin with the empty set:

|∅| = 0

then we consider the set which has a singular element, the empty set,

|{∅}| = 1

now we consider the set which contains these previous two sets, namely:

|{∅, {∅}}| = 2

next lets collect all these sets in a set, that is

|{∅, {∅}, {∅, {∅}}}| = 3

and continue
|{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}| = 4

and continue

|{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}}| = 5

and continue... the diligent student will complete this exercise...

5.24 Cross Product
In this section we introduce the concept of cross product, this is yet another
way of making new sets from old sets.
Definition 5.24.1 Cross Product. Given two sets A and B we can define
a new set which we will call the cross product of A and B (or the cartesian
product) defined as

A×B = {(a, b) | a ∈ A and b ∈ B}

♢
This is the collection of all ordered pairs. We explore this new construction

in the following examples.
Example 5.24.2 Consider the sets
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thus the cross product is the following set:

□
Our next example explores the lack of commutation of the cross product.

Example 5.24.3 Let’s look at another cross product of some sets. Calculate
A×B and B ×A given the sets A = {2, G,E} and B = {π, e, P}

A×B = {(2, π), (2, e), (2, P ), (G, π), (G, e), (G,P ), (E, π), (E, e), (E,P )}

B ×A = {(π, 2), (π,G), (π,E), (e, 2), (e,G), (e,E), (P, 2), (P,G), (P,E)}

□
The cross product has been shown since very early on in your mathematical

education mostly the ordered pairs you would consider was the cartesian plane,
the good ol’ x and y axis.
Example 5.24.4 This time if we consider a set I’ve tried very hard to stay
away from, namely the real numbers, R, then the cartesian plane is the set
R× R.

Throughout your youth you have surely seen many points illustrated on
this cartesian plane, such as the elements (1, 3), (2,−2), and (−2,−1)
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□
With this basic understanding of the cross-product we are ready to start

proving with it.
Example 5.24.5 Prove: For sets A, B, C, and D, if A ⊆ C and B ⊆ D then
A×B ⊆ C ×D

Proof. We begin by assuming that A ⊆ C and that B ⊆ D. Our objective is
to prove that A×B ⊆ C ×D, that is we need to show a subset, we do this by
choosing an arbitrary element, x ∈ A×B.
To understand this element we of course refer to the definition (Definition 5.24.1,
p. 91), from which we see the defining condition promises that we can find two
elements, one from A and one from B, name these elements, a ∈ A and b ∈ B,
such that x = (a, b).
By our assumption that A ⊆ C, since we established a ∈ A by definition of
subset we get that a ∈ C. Similarly, by our assumption that B ⊆ D and since
we established that b ∈ B again by the definition of subset b ∈ D.
Therefore, by the definition of cross product x = (a, b) ∈ C ×D as desired. ■

□
Example 5.24.6 Prove: Let A and B be sets, then A× (B ∪C) = (A×B)∪
(A× C)
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Proof. [Want to show: A × (B ∪ C) ⊆ (A × B) ∪ (A × C)]
We begin by choosing an arbitrary element x ∈ A× (B ∪C). By the definition
of cross product, we can find m ∈ A and ` ∈ B ∪ C such that x = (m, `). By
definition of union, ` ∈ B or ` ∈ C.
Hence (m, `) ∈ A × B, when ` ∈ B, or (m, `) ∈ A × C, when ` ∈ C. Thus,
by definition of union, x = (m, `) ∈ (A × B) ∪ (A × C) Thus by definition of
subset, since x ∈ A× (B ∪C) and x ∈ (A×B) ∪ (A×C), hence we have that
A× (B ∪ C) ⊂ (A×B) ∪ (A× C).
[Want to show: (A × B) ∪ (A × C) ⊆ A × (B ∪ C)]
This time let y ∈ (A×B)∪ (A×C). Hence by definition of union, y ∈ (A×B)
or y ∈ (A × C). Hence, by definition of cross product, we can find s ∈ A and
t ∈ B such that y = (s, t) or d ∈ A and r ∈ C such that y = (d, r).
Case 1: y = (s, t)
Since t ∈ B, by definition of union, t ∈ B ∪ C and since s ∈ A, y = (s, t) ∈
A× (B ∪C) by definition of cross product. Thus by definition of subset, since
y ∈ (A × B) ∪ (A × C) and y ∈ A × (B ∪ C), therefore we can conclude that
(A×B) ∪ (A× C) ⊂ A× (B ∪ C)
Case 2: y = (d, r)
Since l ∈ C, by definition of union, r ∈ B ∪ C. And since d ∈ A, by definition
of cross prodcut, y = (d, r) ∈ A× (B ∪ C). Thus by definition of subset, since
y ∈ (A×B)∪ (A×C) and y ∈ A× (B ∪C), thus we have (A×B)∪ (A×C) ⊂
A× (B ∪ C)
Thus, since both cases hold, by direct proof and proof by cases, A× (B ∪C) =
(A×B) ∪ (A× C) ■

□

5.25 Families
We now consider, basic constructions like union, intersection and the cross
product between many sets at once. We consider these over a family of sets,
which is just a fancy way of saying a set whose members are sets. We will most
often use the script font to indicate a family, for example A .
Definition 5.25.1 Union over a Family. Let A be a family of sets. We
define the union over A as⋃

A∈A

A = {x | x ∈ A for some A ∈ A }

♢
As we are still learning set-builder notation, to help us be able to unpack

the condition in the previous definition, note the following condition of mem-
bership:

x ∈
⋃

A∈A

A if and only if [∃A ∈ A x ∈ A]

Example 5.25.2 We now illustrate the union over a family with a Venn dia-
gram below for the family of sets R = {A,B,C}
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□
Example 5.25.3 Consider the family of sets B = {R,S, T} where each set is
defined as follows

R = {1, 3, G,□,△,Ω}

S = {α,Γ,H, 7, 900}

T = {1,Γ,△, 200, 16}

Thus the union over B is⋃
B∈B

B = (R ∪ S) ∪ T = {1, 3, G,□,△,Ω, α,Γ,H, 7, 900, 200, 16}

□
Our next topic examines intersections within this new concept of families

of sets.
Definition 5.25.4 Intersection over a Family. Let A be a family of sets.
We define the intersection over A as⋂

A∈A

= {x | x ∈ A for every A ∈ A }

♢
To help again we unpack the condition in the previous definition, note the

following condition of membership:

x ∈
⋂

A∈A

A if and only if [∀A ∈ A x ∈ A]

Example 5.25.5 We now illustrate the intersection over a family with Venn
diagram below, again, for the family of sets R = {A,B,C}
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□
Example 5.25.6 Consider the family of sets B = {R,S, T} where each set is
defined as follows

R = {1, 3, G,□,△,Ω}

S = {3, α,Γ,H,Ω, 900,△}

T = {1, 3,Γ,Ω,△, 200, 16}

Thus the union over B is⋂
B∈B

B = (R ∩ S) ∩ T = {Ω, 3,△}

□
Now lets explore a general proof involving these constructions.

Example 5.25.7 Prove: For a non-empty family of sets A⋂
A∈A

A ⊆
⋃

A∈A

A

Proof. We begin as we do for any subset proof, and that is, we choose an
arbitrary element x ∈

⋂
A∈A A

By definition of the intersection over a family for any member of the family
x must belong to it. So choose an arbitrary C ∈ A thus x ∈ C, which by
defintion of union, since x ∈ C we have that x ∈

⋃
A∈A A.

Therefore since we chose an arbitrary element x ∈
⋂

A∈A A and have shown
x ∈

⋃
A∈A A, we can conclude

⋂
A∈A A ⊆

⋃
A∈A A as desired. □ ■

□
If this is still a bit too abstract for our dear reader we will now introduce

a concept which allows us to look at these constructions a bit more like the
summation from our calculus classes.
Definition 5.25.8 Indexed Family of Sets. Let ∆ be a nonempty set such
that for every i ∈ ∆ we correspond a set Ai, an indexed family of sets over
∆, is the family of sets,

A = {Ai | i ∈ ∆}
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We call the set ∆ the indexing set. ♢
The most common case of an index set is when ∆ ⊆ N in the form of

∆ = {0, 1, 2, 3, ..., n}

for some n ∈ N, in this case we will often write the intersections as

⋂
i∈∆

Ai =

n⋂
i=0

Ai

and the union as ⋃
i∈∆

Ai =

n⋃
i=0

Ai

With this new construction lets visit another example.

Example 5.25.9 Consider the indexing set ∆ = {0, 1, 2}, and the family of
sets C = {C0, C1, C2} where each set is defined as follows

C0 =

{
7, 15,H,△, π,

1

3

}

C1 =

{
15,△,□,H,

1

3
, 0, π

}
C2 =

{
7, 15,Γ,

1

3
, π, 0, 16

}
Thus the union over C is

⋂
i∈∆

= Ci

2⋂
i=0

Ci = (C0 ∩ C1) ∩ C2

=

{
1

3
, 15, π

}
□

Of course this basic use case of an index set is far from the only one, in the
next example we leave the case of a finite indexing set by setting ∆ = N. To
build these with ease, and to show the reader a use case from future mathe-
matics courses where each set in our family is a subset of the real numbers.
Example 5.25.10 Consider the indexing set N and the family of sets A =
{Ai | i ∈ N} defined as the following intervals,

Ai =

[
1

i+ 2
,

1

i+ 1

)
=

{
x ∈ R

∣∣∣∣ 1

i+ 1
≤ x <

1

i

}
thus we have ⋃

i∈N

Ai =

∞⋃
i=0

Ai = (0, 1) = {x ∈ R | 0 < x < 1}

and ⋂
i∈N

Ai =

∞⋂
i=0

Ai = ∅

□
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In your next example we leave the natural numbers for our index set and
instead explore the example where our indexing set of Q.
Example 5.25.11 Consider the the indexing set Q Now define the indexed
family of sets B = {Bn | n ∈ Γ}, defined as the following closed intervals,

Bα =
[
α, α+ 1

]
= {x ∈ R | α ≤ x ≤ α+ 1}

thus we have ⋃
α∈Q

Bα = [0,∞) = {x ∈ R | 0 ≤ x < ∞}

and ⋂
α∈Q

Bα = {0}

□
Now that we have built our intuition on unions and intersections over fam-

ilies, lets prove a result about them.

Example 5.25.12 Let ∆ be an indexing set, and A = {Ai | i ∈ ∆} be an
indexed family of sets.

Prove: If B is a set then

B ∩

(⋃
i∈∆

Ai

)
=
⋃
i∈∆

(B ∩Ai)
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Proof. This is a proof of the equality of two sets so we will need to break up
the proof into two parts, namely we will need to show two subsets.
Proving: B ∩

(⋃
i∈∆ Ai

)
⊆
⋃

i∈∆(B ∩Ai)
To prove this we will start like most subset proofs, namely by choosing an
arbitrary element s ∈ B ∩

(⋃
i∈∆ Ai

)
. By the definition of intersection both

s ∈ B and s ∈
⋃

i∈∆ Ai. By the definition of union over a family if we choose an
arbitrary j ∈ ∆ we have s ∈ Aj , thus since s ∈ B and s ∈ Aj by the definition
of intersection we have that s ∈ B ∩ Aj . Because we chose j ∈ ∆ arbitrary it
is true the for any i ∈ ∆ s ∈ B ∩ Ai and hence the definition of union over a
family is satisfied, that is

s ∈
⋃
i∈∆

(B ∩Ai)

as desired.
Proving:

⋃
i∈∆(B ∩Ai) ⊆ B ∩

(⋃
i∈∆ Ai

)
To prove this we will start like most subset proofs, namely by choosing an
arbitrary element y ∈

⋃
i∈∆(B∩Ai). By definition of union over a family when

we choose an arbitrary element k ∈ ∆ we must have that y ∈ (B ∩ Ak) by
definition of intersection this means that both y ∈ B and y ∈ Ak. Since we
chose k ∈ ∆ arbitrarily we have shown that for any i ∈ ∆ that y ∈ Ai that is
we have shown the definition of membership to a union over a family, namely
that

y ∈
⋃
i∈∆

Ai

Yet, we have also shown that y ∈ B, thus by definition of intersection we have
that

y ∈ B ∩

(⋃
i∈∆

Ai)

)
as desired.
Since we have shown both the subsets

B ∩

(⋃
i∈∆

Ai

)
⊆
⋃
i∈∆

(B ∩Ai)

and ⋃
i∈∆

(B ∩Ai) ⊆ B ∩

(⋃
i∈∆

Ai

)
we can conclude the desired equality of:

B ∩

(⋃
i∈∆

Ai

)
=
⋃
i∈∆

(B ∩Ai)

□ ■
□

We finish up this section with a concept which will come into play when
we discuss partitions later in the course.

Definition 5.25.13 Pairwise Disjoint. The indexed family A = {Aα|α ∈
∆} of sets is pairwise disjoint if and only if for all α and β in ∆, either

Aα = Aβ

or
Aα ∩Aβ = ∅
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In other words, the sets are completely the same, or completely different.
♢

Example 5.25.14 First consider the indexing set ∆ = {1, 2, 3} and the in-
dexed family of sets A = {A1, A2, A3}

Notice that
A1 ∩A2 = ∅
A1 ∩A3 = ∅
A2 ∩A3 = ∅

and thus this family is pairwise disjoint.
Next, consider the same index set of ∆ = {1, 2, 3} yet this time the indexed

family B = {B1, B2, B3}

This time notice that ⋂
i∈∆

Bi = ∅

and
B2 ∩B3 = ∅

yet
B1 ∩B3 ̸= ∅

yet
B1 ̸= B3

thus B is not pairwise disjoint □
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We could not end the section without a proof, so here is your obligatory
proof.

Example 5.25.15 Let ∆ be an indexing set, and let both A = {Ai | i ∈ ∆}
and B = {Bi | i ∈ ∆} be indexed family of sets.

Prove: If A is pairwise disjoint and B ⊆ A then B is pairwise disjoint.
Proof. We begin this proof by assuming our antecedent.
Assume that A is pairwise disjoint and B ⊆ A . It is our objective to prove that
B is pairwise disjoint, but looking above and seeing the definition of pairwise
disjoint we see that we need to prove a universal quantifier, thus we choose
arbitrary j ∈ ∆ and k ∈ ∆. Now since we have assumed that B ⊆ A we have
that both Bj ∈ A and Bk ∈ A , thus by definition of membership to A we
can find s ∈ ∆ and t ∈ ∆ so that Bj = As and Bk = At.
Since we have assumed that A is pairwise disjoint then either

Bj ∩Bk = As ∩At = ∅

or
Bj = As = At = Bk

hence we have satisfied the definition of pairwise disjoint of B. □ ■
□

Note 5.25.16 For the proofs in this section we see a common muddle that I
like to call chasing the definitions, I know it can be jarring at first not having
your warm and safe calculative muddle, but I promise you it will be ok! And
I promise you in the next chapter there will always be a very solid calculative
step!

5.26 Exercises
1. For the sets A, B, and C, for the following draw a Venn diagram shading

the appropriate regions

(a) A ∪ (B ∩ C)c

(b) (A ∩B)c − C

(c) A ∩ (B − C)

2. For the following prove that A ⊆ B

(a)

A = {a ∈ Z | a = 12k for some k ∈ Z}
B = {b ∈ Z | b = 6s for some s ∈ Z}

(b)

A = {a ∈ Z | a = 7k + 1 for some k ∈ Z}
B = {b ∈ Z | b = 14s+ 8 for some s ∈ Z}

(c)

A = {a ∈ Z |a = 6k + 15s for some k ∈ Z and some s ∈ Z}
B = {b ∈ Z |3t for some t ∈ Z}

3. For the following sets write out all elements of both A×B and B ×A
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(a)

A = {1, 3, 23,□}
B = {□,△, α}

(b)

A = {12, π,Γ}
B = {σ, ϕ, θ}



Chapter 6

Principle of Mathematical In-
duction

Here, we turn our attention to a proof technique that is extremely powerful and
a favorite of students for its deceptively straightforward algorithmic approach,
known as induction. This method is essential to your future mathematics
courses, and allows us to prove statements that extend across infinite scenarios
by using repetition as its backbone. Interestingly, it all begins with a concept
we’ve known since our earliest days with numbers... counting!

6.1 What We Will Use
In this chapter you can, as usual, assume anything you had in Section 3.2,
p. 33.

We will be using some constructions from your previous math courses a
good bit in this chapter so we will review/establish a bit of notation before we
enter this chapter.

6.2 Summation
We use the summation notation to add up a collection of indexed numbers.

Summation Notation.

For any n ∈ N and any collection of indexed numbers:
a0, a1, a2, ..., an, define

n∑
i=0

ai = a0 + a1 + a2 + a3 + ...+ an

The most basic examples arise when the ai satisfy some formula with an
input of i.
Example 6.2.1 Let ai = 2i− 1, now we calculate:

3∑
i=0

ai =

3∑
i=0

(2i− 1)

= (2 · (0)− 1) + (2 · (1)− 1) + (2 · (2)− 1) + (2 · (3)− 1)

104
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= −1 + 1 + 3 + 5

= 8

□
The summation does not need to start at 0; it can start anywhere, the point

is that it moves through the successors wherever it is you start, for example:
5∑

i=2

ai = a2 + a3 + a4 + a5

or in a more general fashion for any k ∈ N and any m ∈ N, with k ≤ m,
m∑
i=k

ai = ak + ak+1 + ak+2 + ...+ am

This construction lends itself to the use of induction (the object of this
chapter) so well as it has a property I like to refer to as peeling off a factor.

Peeling Off a Summation.

Notice for any k ∈ N and any m ∈ N, with k ≤ m, we can peel off
the first term

m∑
i=k

ai = ak +

 m∑
i=(k+1)

ai


or this time peeling off the last term

m∑
i=k

ai =

(
m−1∑
i=k

ai

)
+ am

6.3 Product
We use the product notation to multiply together a collection of indexed num-
bers.

Product Notation.

For all n ∈ N and any collection of indexed numbers: a0, a1, a2, ..., an
n∏

i=0

ai = a0 · a1 · a2 · a3 · ... · an

Our use case of this notation will be again when ai satisfy some equation
in i.
Example 6.3.1 Again, for a simple first example consider ai = 2i−1, now we
calculate:

3∏
i=0

ai =

3∏
i=0

(2i− 1)

= (2 · (0)− 1) · (2 · (1)− 1) · (2 · (2)− 1) · (2 · (3)− 1)

= −1 · 1 · 3 · 5
= −15
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□
In a similar fashion to the summation, the product does not need to start

at 0 it can start any where, the point is that it moves through the successors
wherever it is you start, for example:

5∏
i=2

ai = a2 · a3 · a4 · a5

or in a more general fashion for any k ∈ N and any m ∈ N, with k ≤ m,
m∏
i=k

ai = ak · ak+1 · ak+2 · ... · am

Just as with the summation the main characteristic we will involve is peel-
ing.

Peeling Off a Product.

Notice, this time, for any k ∈ N and any m ∈ N with k ≤ m, we can
peel off the first term

m∏
i=k

ai = ak ·

 m∏
i=(k+1)

ai


or this time peeling off the last term

m∏
i=k

ai =

(
m−1∏
i=k

ai

)
· am

6.4 Factorial
We use the factorial notation to count the number of ways to permute a col-
lection of objects.

Factorial.

We define
0! = 1

and for any n ∈ N with n > 0 we define

n! =

n−1∏
i=0

(n− i) = n · (n− 1) · (n− 2) · ... · 1

Example 6.4.1 For this example we will calculate some factorials:

2! = 2 · 1 = 2

3! = 3 · 2 · 1 = 6

4! = 4 · 3 · 2 · 1 = 24

5! = 5 · 4 · 3 · 2 · 1 = 120

□
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As is the theme of this chapter, there is definitely a pattern.

Peeling Off a Factorial.

For any m ∈ N we can peel off leading terms of the factorial

m! = (m) · [(m− 1)!] = (m · (m− 1)) · [(m− 2)!]

and so on.

6.5 Introduction to Induction
We begin with a couple of definitions that are fundamental, yet this technique
we are building to is so algorithmic I believe students can become extremely
proficient at applying mathematical induction with little found here.

Definition 6.5.1 Successor. Let n ∈ N we call (n+1) ∈ N the successor of
n. ♢

In the late 1800’s an Italian mathematician Giuseppe Peano developed five
axioms which can create all of the basic ordering and arithmetic properties we
all know and love of the natural numbers, using an undefined term of successor,
our definition of course captures the heart of his construction. Let it be said,
Peano did not consider 0 a natural number, but we will forgive him. It is
through these axioms which one verifies induction, this is out side the scope of
this text but, such a fun exercise for the dedicated reader!
Definition 6.5.2 Inductive Set. Let S ⊆ N, we call S an inductive set if
and only if S has the property

n ∈ S =⇒ (n+ 1) ∈ S

♢
This says that a set S is an inductive set whenever it contains all of its

successors.
It is inductive sets that are the underpinning of mathematical induction.

Definition 6.5.3 Principle of Mathematical Induction. Let k ∈ N, and
let S ⊆ N with the following properties:

(i) k ∈ S

(ii) S is an inductive set

Then S contains all natural numbers greater than or equal to k, that is

S = {n ∈ N | n ≥ k}

♢
In some texts this is referred to as a generalized version of induction, those

people also usually follow in the footsteps of Peano and naively assume 0 is
not a natural number, we instead give the following example.
Example 6.5.4 Let S ⊆ N and assume that both 0 ∈ S and S is an inductive
set. By the Principle of Mathematical Induction (PMI) we can conclude that
S = N. □

It has now been my experience that students have clocked out at this point
in the lecture, no matter how much I have promised them that their algorithmic
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tendencies will be returning. So let’s let the rubber hit the road and actual do
some proofs!

The basic idea of PMI is to prove that the truth set, S ⊂ N, of a predicate
P (x) is equal to an inductive set. Or to hopefully make this sound less like a
riddle,

Proof of ∀m ≥ k P (m) Using PMI.

Proof:

(i) (Base Step) Show that P (k) is true

(ii) (Induction Assumption) Assume we can find an n ∈ N such
that P (n) is true

(iii) (Prove: P(n + 1)) ... thus P (n+ 1) is true

Therefore ∀m ∈ N such that m ≥ k then P (m) is true.

Hopefully you can at least start to see the algorithm forming, there are 3
steps, and we take these steps every time!

6.6 First Proof with Induction
For our first example of induction we will use a summation (Section 6.2, p. 103)

Prove: For any m ∈ N with m ≥ 1

m∑
i=1

(2i− 1) = m2

Before we begin this proof we sing a slightly different song for induction
(play-along):

”What’s the Base Case?”1. m = 1

”What’s the P (m)?”2.

P (m) :

m∑
i=1

(2i− 1) = m2

”What’re the definitions?”3. summation (Section 6.2, p. 103)!
”Now, what to do?”4. Principle of Mathematical Induction! (it is the

point of the chapter, also we usually just call it induction)

6.7 The Beginning
In Induction we always begin with showing the base case, in our song we iden-
tified the base case as m = 1, so for our first step we need to show that P (1)
is true

(i) (Base Case):
1∑

i=1

(2i− 1) = 2 · (1)− 1

= 1

= 12
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hence P (1) :
∑1

i=1(2i− 1) = 12,that is we have shown the base case
After our base case step we use our most crucial step of them all the in-

duction assumption, this is where we just assume it works for some arbitrary
number that is at least the size of our base case. For this example I will name
that arbitrary number n.

(ii) (Induction Assumption):
Assume we can find an n ∈ N such that

n∑
i=1

(2i− 1) = n2

6.8 The Muddle
The muddle for an induction always has the same purpose an often is done
with a calculation. The purpose of the muddle is to satisfy the last part of an
induction proof, the n+ 1 case.

(iii) (Prove: P(n + 1))
Now we (use the student’s favorite word...) calculate

n+1∑
i=1

(2i− 1) =

(
n∑

i=1

(2i− 1)

)
+ (2(n+ 1)− 1) (peel off)

= n2 + (2(n+ 1)− 1) (induction assumption!)
= n2 + 2n+ 2− 1

= n1 + 2n+ 1

= (n+ 1)2 (factoring)

6.9 The End
Using Induction the muddle should have always endend with a calculation
which showed our desired result. In this example we have shown

P (n+ 1) :

n+1∑
i=1

(2i− 1) = (n+ 1)2

therefore by proof by induction we have shown for any m ∈ N with n ≥ 1 that
m∑
i=1

(2i− 1) = m2

QED

6.10 Basic Induciton Examples
In this section we will give some basic examples of induction using the tools
from Section 6.1, p. 103
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Example 6.10.1 Prove: For any m ∈ N with m ≥ 1

m∑
i=1

(8i− 5) = 4m2 −m

Proof. (i) (Base Case):
Note that as we are tasked to show our result holds for any m ≥ 1, our base
case is 1!

1∑
i=1

(8i− 5) = (8 · (1)− 5)

= 3

= 4 · (1)2 − (1)

thus we have shown

P (1) :

1∑
i=1

(8i− 5) = 4 · (1)2 − (1)

(ii) (Induction Assumption):
Assume we can find an n ∈ N such that

n∑
i=1

(8i− 5) = 4n2 − n

(iii) (Prove: P(n + 1))
Calculate:

n+1∑
i=1

(8i− 5) =

(
n∑

i=1

(8i− 5)

)
+ (8(n+ 1)− 5) (peel off)

= (4n2 − n) + (8n+ 3) (induction assumption)
= 4n2 + 7n+ 3

For this example I find it easiest to also work backwards

4(n+ 1)2 − (n+ 1) = 4(n2 + 2n+ 1)− (n+ 1)

= 4n2 + 8n+ 4− n− 1

= 4n2 + 7n+ 3

Thus, we have shown
∑n+1

i=1 (8i− 5) = 4(n+ 1)2 − (n+ 1).
Hence, by proof by principle of mathematical induction,

∑m
i=1(8i−5) = 4m2−

m for any m ∈ N with m ≥ 1. □ ■
□

Example 6.10.2 Prove: For any m ∈ N with m ≥ 1

m∑
i=1

(3i− 2) =
m

2
(3m− 1)
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Proof. (i) (Base Case):

1∑
i=1

(3i− 2) = 3(1)− 2

= 1

=
1

2
(3(1)− 1)

hence we have established:

P (1) :

1∑
i=1

(3i− 2) =
1

2
(3(1)− 1)

(ii) (Induction Assumption):
Assume we can find an n ∈ N such that

n∑
i=1

(3i− 2) =
n

2
(3n− 1)

(iii) (Prove: P(n + 1))
Calculate:

n+1∑
i=1

(3i− 2) = (

n∑
i=1

(3i− 2)) + (3(n+ 1)− 2)

=
n

2
(3n− 1) + (3(n+ 1)− 2) (induction assumption)

=
n

2
(3n− 1) + (3n+ 1)

=
n

2
(3n− 1) +

2

2
(3n+ 1)

=
n(3n− 1) + 2(3n+ 1)

2

=
3n2 − n+ 6n+ 2

2

=
3n2 + 5n+ 2

2

=
(n+ 1)(3n+ 2)

2

=
(n+ 1)(3(n+ 1)− 1)

2

Thus, we have shown
∑n+1

i=1 (3i− 2) = (n+1)
2 (3(n+ 1)− 1).

Hence, by proof by principle of mathematical induction,
∑m

i=1(3i − 2) =
m
2 (3m− 1) for any m ∈ N with m ≥ 1. □ ■

□
Example 6.10.3 Prove: For any m ∈ N with m ≥ 1

m∑
i=1

1

i(i+ 1)
=

m

m+ 1
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Proof. (i) (Base Case):
Note that as we are tasked to show our result holds for any m ≥ 1, our base
case is again 1!

1∑
i=1

1

i(i+ 1)
=

1

(1) · ((1) + 1)

=
1

2

=
(1)

((1) + 1)

hence we have established

P (1) :

1∑
i=1

1

i(i+ 1)
=

(1)

((1) + 1)

(ii) (Induction Assumption):
Assume we can find an n ∈ N such that

n∑
i=1

1

i(i+ 1)
=

n

n+ 1

(iii) (Prove: P(n + 1))
Calculate:
n+1∑
i=1

1

i(i+ 1)
=

(
n∑

i=1

1

i(i+ 1)

)
+

1

(n+ 1)((n+ 1) + 1)
(peel off)

=
n

n+ 1
+

1

(n+ 1)(n+ 2)
(Induction Assumption)

=
n(n+ 2) + 1

(n+ 1)(n+ 2)
(common denominator)

=
n2 + 2n+ 1

(n+ 1)(n+ 2)

=
(n+ 1)2

(n+ 1)(n+ 2)
(factoring)

=
n+ 1

(n+ 1) + 1

Thus, we have shown
∑n+1

i=1
1

i(i+1) =
n+1

(n+1)+1 .
Hence, by proof by principle of mathematical induction,

∑m
i=1

1
i(i+1) = m

m+1

for any m ∈ N with m ≥ 1. □ ■
□

Now let’s see some examples using the product Section 6.1, p. 103
Example 6.10.4 Prove: For any m ∈ N with m ≥ 1

m∏
i=1

(
1− 1

i+ 1

)
=

1

m+ 1
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Proof. (i) (Base Case):
Note that as we are tasked to show our result holds for any m ≥ 1, our base
case is again 1!

1∏
i=1

(
1− 1

i+ 1

)
= 1− 1

(1) + 1

= 1− 1

2

=
2− 1

2

=
1

(1) + 1

hence we have established our based case, that is:

P (1) :

1∏
i=1

(
1− 1

i+ 1

)
=

1

(1) + 1

(ii) (Induction Assumption):
Assume we can find an n ∈ N such that

n∏
i=1

(
1− 1

i+ 1

)
=

1

n+ 1

(iii) (Prove: P(n + 1))
Calculate:
n+1∏
i=1

(
1− 1

i+ 1

)
=

(
n∏

i=1

(
1− 1

i+ 1

))
·
(
1− 1

(n+ 1) + 1

)
(peel off)

=

(
1

n+ 1

)
·
(
1− 1

n+ 2

)
(induction assumption)

=
1

n+ 1
− 1

n+ 1
· 1

n+ 2

=
(n+ 2)− 1

(n+ 1)(n+ 2)
(common denominator)

=
n+ 1

(n+ 1)(n+ 2)

=
1

(n+ 1) + 1

Thus, we have shown
∏n+1

i=1

(
1− 1

i+1

)
= 1

(n+1)+1 .

Hence, by proof by principle of mathematical induction,
∏m

i=1

(
1− 1

i+1

)
=

1
m+1 for any m ∈ N with m ≥ 1. □ ■

□
Next, we explore an example with a base case not 1.

Example 6.10.5 Prove: For any m ∈ N with m ≥ 2

m∏
i=2

i2 − 1

i2
=

m+ 1

2m
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Proof. (i) (Base Case):
For this example as we are asked to prove this for all m ≥ 2, our base case is 2.

2∏
i=2

i2 − 1

i2
=

(2)2 − 1

(2)2

=
4− 1

4

=
3

4

=
(2) + 1

2 · (2)

hence we have established:

P (2) :

2∏
i=2

i2 − 1

i2
=

(2) + 1

2 · (2)

(ii) (Induction Assumption):
Assume we can find an n ∈ N such that

n∏
i=1

i2 − 1

i2
=

n+ 1

2n

(iii) (Prove: P(n + 1))
Calculate:

n+1∏
i=2

i2 − 1

i2
=

(
n∏

i=1

i2 − 1

i2

)
· (n+ 1)2 − 1

(n+ 1)2)
() (peel off)

=

(
n+ 1

2n

)
· (n+ 1)2 − 1

(n+ 1)2)
(induction assumption)

(n+ 1)(n2 + 2n+ 1− 1)

(2n)(n+ 1)2

=
n2 + 2n

2n(n+ 1)

=
n(n+ 2)

2n(n+ 1)

=
(n+ 1) + 1

2(n+ 1)

Thus, we have shown
∏n+1

i=2
i2−1
i2 = (n+1)+1

2(n+1) .
Hence, by proof by principle of mathematical induction,

∏m
i=2

i2−1
i2 = m+1

2m for
any m ∈ N with m ≥ 2. □ ■

□
Next, lets see some examples with the factorial Section 6.1, p. 103

Example 6.10.6 Prove: For any m ∈ N with m ≥ 1

m∏
i=1

(4i− 2) =
(2m)!

(m!)
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Proof. (i) (Base Case):
Let n = 1. Calculate

∏1
i=1(4i− 2) = 2(1)!

(1)! :

4(1)− 2 = 2

(ii) (Induction Assumption):
Assume we can find an n ∈ N such that

n∏
i=1

(4i− 2) =
(2n)!

(n!)

(iii) (Prove: P(n + 1))
Calculate:
n+1∏
i=1

(4i− 2) =
2(n+ 1)!

(n+ 1)!
= (

n∏
i=1

(4i− 2))((4(n+ 1)− 2)

=
2n!

n!
((4(n+ 1)− 2) (induction assumption)

= (
2n!

n!
)(4n+ 2)

= (
2n!

n!
)(2(2n+ 1))

= (2)
(2n+ 1)((2n)!)

n!

=
(2n+ 1)!

n!
(2)

=
(2n+ 2)!

1
2 (2n+ 2)n!

=
(2n+ 2)!

(n+ 1)n!

=
(2n+ 2)!

(n+ 1)!

Thus, we have shown
∏n+1

i=1 (4i− 2) = 2(n+1)!
(n+1)! .

Hence, by proof by principle of mathematical induction,
∏m

i=1(4i− 2) = (2m)!
m!

for any m ∈ N with m ≥ 1. □ ■
□

Example 6.10.7 Prove: For any m ∈ N with m ≥ 1

m∑
i=1

i

(i+ 1)!
= 1− 1

(m+ 1)!
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Proof. (i) (Base Case):
Note that as we are tasked to show our result holds for any m ≥ 1, our base
case is again 1!

1∑
i=1

i

(i+ 1)!
=

(1)

(1) + 1

hence we have verified the condition P (1)
(ii) (Induction Assumption):
Assume we can find an n ∈ N such that

n∑
i=1

i

(i+ 1)!
= 1− 1

(n+ 1)!

(iii) (Prove: P(n + 1))
Calculate:

n+1∑
i=1

i

(i+ 1)!
=

(
n∑

i=1

i

(i+ 1)!

)
+

(n+ 1)

[(n+ 1) + 1]!
(peel off)

=

(
1− 1

(n+ 1)!

)
+

n+ 1

(n+ 2)!
(induction assumption)

= 1 +
−(n+ 2) + (n+ 1)

(n+ 2)!
(common denominator)

= 1− 1

((n+ 1) + 1)!

Thus, we have shown
∑n+1

i=1
i

(i+1)! = 1− 1
((n+1)+1)! .

Hence, by proof by principle of mathematical induction,
∑m

i=1
i

(i+1)! = 1 −
1

(m+1)! for any m ∈ N with m ≥ 1. □ ■
□

I really like this next example as it exemplifies how induction is often used in
your future algebra courses, namely the union is defined as something between
two sets, so to do it to multiple sets we need do two at a time. This two at a
time is an example of peeling off, just as the previous examples.

Example 6.10.8 Prove: Let A = {Ai | i ∈ ∆} be an indexed family of sets,
and For any m ∈ N with m ≥ 1 such that ∆ = {1, 2, ...,m}(

m⋂
i=1

Ai

)c

=

m⋃
i=1

Ac
i
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Proof. (i) (Base Case):
Note that as we are tasked to show our result holds for any m ≥ 1, our base
case is again 1! (

1⋂
i=1

Ai

)c

= (A1)
c

hence we have established the base case P (1)
(ii) (Induction Assumption):
Assume we can find an n ∈ N such that(

n⋂
i=1

Ai

)c

=

n⋃
i=1

Ac
i

(iii) (Prove: P(n + 1))
Calculate:(

n+1⋂
i=1

Ai

)c

=

((
n⋂

i=1

Ai

)
∩An+1

)
(peel off)

=

(
n⋂

i=1

Ai

)c

∪Ac
n+1 (DeMogran’s Law)

=

(
n⋃

i=1

Ac
i

)
∪Ac

n+1 (induction assumption)

=

n+1⋃
i=1

Ac
i

Thus, we have shown
(⋂n+1

i=1 Ai

)c
=
⋃n+1

i=1 Ac
i .

Hence, by proof by principle of mathematical induction, (
⋂m

i=1 Ai)
c
=
⋃m

i=1 A
c
i

for any m ∈ N with m ≥ 1. □ ■
□

6.11 The Fibonacci Sequence
This next topic is one that stuck with me from my undergraduate experience.
I was lucky enough to be taught by the Italian mathematician Dr. Annalisa
Calini. She told us the story of her fellow Italian mathematician Fibonacci
with such enthusiasm that I could never hope to match. Yet, here is my poor
attempt.

The Story of Fibonacci.

Our story begins on Day 1 with Fibonacci sitting in a park on
a beautiful day. He notices 1 pair young bunnies, male and female,
hopping by.
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The next day, on Day 2 Fibonacci returned to the same park and
noticed the same 1 pair, yet this time they have grown to rabbits, now
biologically capable of procreating.

He again returned the following day, on Day 3, and on this day
he noticed his pair of rabbits, but also another pair of bunnies, again
paired as in one male and one female, giving us a total of 2 pair of
rabbits.

Now on Day 4 Fibonacci noticed his original pair had given birth
again, as well as the first litter was now grown to the age of reproduction,
giving us 3 pairs of rabbits total. He deduced that it took one day for
the rabbits to mature, and then another day for the rabbits to give
birth to a new pair of bunnies.

On Day 5 returning once again to this same park he noticed that
his original pair was there, and their first litter but not the original pair
and the first litter have both produced pairs of bunnies, leaving a total
of 5 pairs of rabbits at the park.

Later on Day 5, Fibonacci returns to his home and comes up with
perhaps the greatest mathematical assumption in all of history,

Assume that rabbits never die!

Then asked himself how many rabbits would be there on day 6, or 7, or
8, or even 1000...

To create a formal definition of the fibonacci we use the concept of induc-
tive definitions. An inductive definition is one which takes the form of PMI,
specifically where we first define a base case and then we define the inductive
step
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Definition 6.11.1 The Fibonacci Numbers. (i) (Bases Cases)

f1 = 1 and f2 = 1

(ii) (Inductive Case)
To calculate any Fibonacci number, fn, we add the two numbers that pre-

ceded it:
fn = fn−1 + fn−2

♢
For fun let’s count some more rabbits.

Example 6.11.2 By definition

f1 = 1

f2 = 1

then

f3 = f2 + f1 = 1 + 1 = 2

f4 = f3 + f2 = 2 + 1 = 3

f5 = f4 + f3 = 3 + 2 = 5

f6 = f5 + f4 = 5 + 3 = 8

f7 = f6 + f5 = 8 + 5 = 13

f8 = f7 + f6 = 13 + 8 = 21

so many bunnies... □
The awake student, usually sitting somewhere right off the front row, will

notice that when we defined the Fibonacci numbers we didn’t just have a
singular base case, and we didn’t define the n+1 case, which is slightly different
from the procedure of induction. To this student I applaud you, that is correct;
we instead used a slightly different version of induction, known commonly as
complete induction.
Definition 6.11.3 Principle of Complete Induction. Let k ∈ N and
suppose S is a subset of N with the following property:

∀n ∈ N with k < n
if {k, k + 1, k + 2, k + 3, ..., n− 1} ⊂ S then n ∈ S
Then S = {n ∈ N | n ≥ k} ♢
Proving using complete induction amounts to a procedure almost identical

to that of our traditional induction

Proof of ∀m ∈ N m ≥ k P (m) with Complete Induction.

Proof:

(i) (Base Steps) Show that P (k) and P (k + 1) are true

(ii) (Induction Assumption) Assume we can find an n ∈ N such
that P (t) is true for any t ∈ N such that k ≤ t < n

(iii) (Prove: P(n)) ... thus P (n) is true

Therefore ∀m ∈ N such that m ≥ k then P (m) is true.

The astute student will note we are really doing nothing different here...
as in PMI we said for any n so why not up to any n − 1. But, this really
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allows us to do exactly what we have been doing its just that in step (iii) it
becomes quite cumbersome to balance n+ 1 everywhere, so this way just lets
us use n as well sometimes we can just get some number less than n and it is
there we would like to invoke the induction assumption not hitting exactly one
number. This range version is much more versatile and it is the method that
I personally just always default to.
Example 6.11.4 Prove: For any m ∈ N such that m ≥ 1 we have f3m is
even (every third Fibonacci number is even)
Proof. (i) (Base Cases):
As we are to show this result for any m ≥ 1, our first base case will be 1!

f3·1 = f2 + f1 = 1 + 1 = 2

and since 1 is an integer and thus 2 = 2 · 1 is even.
As we are using PCI we need to show our next base case of 2.

f3·(2) = f6 = f5 + f4 = 8

(see Example 6.11.2, p. 118 for the complete calculation of f6) and since 4 is an
integer and thus 8 = 2 · 4 is even.
Hence we have established the base cases:

P (1) : f3·(1) is even

and
P (2) : f3·(2) is even

(ii) (Induction Assumption):
Assume we can find an n ∈ N such that

f3t is even

for any t ∈ N such that 1 ≤ t < n
(iii) (Prove: P(n))
Calculate:

f3n = f3n−1 + f3n−2

= f3n−2 + f3n−3 + f3n−2

= 2(f3n−2) + f3(n−1)

Hence, by induction assumption, f3(n−1) is even. Thus by definition of even,
we can find an integer m such that f3(n−1) = 2m
Calculate:

f3n = 2f3n−2 + 2m

= 2(f3n−2+m)

Thus by definition of even, f3n is even. Thus by proof by PCI, f3n is even for
all n ∈ N ■

□
Example 6.11.5 Prove: For any m ∈ N such that m ≥ 1 we have f3m+1 is
odd
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Proof. (i) (Base Case):
Since, again, we are to show this for any m ≥ 1, our first base case is 1!

f3(1)+1 = f4 = f3 + f2 = (f2 + f1) + f2 = (1 + 1) + 1 = 3

Since 1 is an integer and 3 = 1 · (1) + 1 we have that 3 is odd.
As we are using PCI we need to show our next base case of 2.

f3·(2)+1 = f7 = f6 + f5 = 13

(see Example 6.11.2, p. 118 for the complete calculation of f7) and since 6 is an
integer and thus 13 = 2 · 6 + 1 is odd.
Hence, we have estableshed the base cases

P (1) : f3·(1)+1 is odd

and
P (2) : f3·(2)+1 is odd

(ii) (Induction Assumption):
Assume we can find an n ∈ N such that

f3t+1 is odd

for any t ∈ N such that 1 ≤ t < n
(iii) (Prove: P(n))
Calculate:

f3n+1 = f3n + f3n−1

= f3n + f3n−2 + f3n−3

= 2(f3n) + f3n−2 + f3(n−1)

= 2(f3n) + f3(n−1)+1 + f3(n−1)

Note: we know f3n and f3(n−1) are even, because we just proved it. By our
induction assumption, f3(n−1)+1 is odd. Hence by definition of odd, we can
find l,m, a ∈ Z such that f3n = 2l, f3(n−1) = 2m, and f3(n−1)+1 = 2a+ 1.
Calculate:

f3n + f3(n−1)+1 + f3(n−1) = 2l + 2a+ 1 + 2m

= 2(l + a+m) + 1

Thus by definition of odd, f3n+1 is odd. Thus by proof by PCI, f3n+1 is odd
for all n ∈ N ■

□

6.12 Well-Ordering Principle
One of the most important properties of the natural numbers, that will be used
constantly in your studies even if it is rarely mentioned and that is:

Well-Ordering Principle (WOP).

Every nonempty subset of N has a smallest element.

In class when I have introduced this topic in the past it has been greeted
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with the dreaded wE`L oBvIoUsLy.
This property is quite unique to the natural numbers, it’s not true in the

integers, the rationals, the positive rational numbers, the real numbers, nor
are the non-negative real numbers.

WOP seems to come up most often with contradiction, specifically assuming
some property you to want to be true for the natural numbers is not. This is
the negation of a universal statement, and thus you are assuming an existential,
one way of interpreting this existential is to say that thus the set of all natural
numbers that do not have this property is nonempty. Then WOP gives us a
smallest member of this set, and we can quite often contradict by constructing
a smaller element, for example.

For our first example and for the rest of this section we will need a couple
of assumptions, firstly the following definitions
Definition 6.12.1 Prime Number. We say an integer, n, is prime when
the only divisors are 1 and n ♢

and of course for the non-primes.
Definition 6.12.2 Composite Integer. We say an integer, n, is composite
when it is not prime, that is when it has a divisor other than 1 and n. ♢
Note 6.12.3 Besides our usual assumptions we will also assume the properties
of inequalities you know and love from your college algebra course as well (I
usually skip these proofs in class but include them for reference to WOP in my
later classes)

We will also find the next lemma useful for the following proofs.

Lemma 6.12.4 For all integers a and b with b > 0, if a|b then a ≤ b

Proof. Let a and b be arbitrary integers with b > 0 and assume that a|b. By
definition of divides we can find an integer q such that b = aq. Since we assumed
that b > 0 we have that both a > 0 and q > 0. For sake of contradiction assume
that a > b, hence 0 < a− b hence 0 < a− aq = a(1− q).
Since a > 0 then 0 < (1− q) hence 0 < q < 1 thus q = 0 and hence b = a · q =
a ·0 = 0 a contradiction to our assumption that b > 0, as specifically b ̸= 0. ■
Example 6.12.5 Prove: Every natural number n > 1 has a prime factor.
Proof. Choose an arbitrary n ∈ N, if n is prime then indeed n has a prime
factor, namely itself. If n is composite then something other than n and 1 must
divide n. Therefore the following set is non-empty:

R = {m ∈ N | m|n, m ̸= n, and m ̸= 1}

By WOP, R has a smallest element, denote this element as p ∈ T .
For the sake of contradiction assume that p is not prime, that is we assume
that p is composite. By definition of composite we can find a divisor d such
that d ̸= 1 and d ̸= p, yet by definition of divides we can find a k ∈ Z such
that p = dk and we can find a t ∈ N such that n = tp, thus n = tdk, therefore
d ∈ R Yet by Lemma 6.12.4, p. 121 we have that d ≤ p yet we assumed d ̸= p
hence d < p a contradiction to p being the smallest element of R. □ ■

□
We have used the next proposition without proof throughout the text, now

we can finally present a proof here.
Proposition 6.12.6 The Division Algorithm. For all integers a and b,
with a ̸= 0, there exists unique integers q and r such that

b = qa+ r
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with 0 ≤ r < |a|

Proof of the Division Algorithm. Let a and b be integers with a ̸= 0.
Consider the set:

S = {b− ak | k ∈ Z and b− ak ≥ 0}

Notice that if 0 ∈ S then we can find a t ∈ Z such that b− at = 0 thus b = at
and hence t plays the role of our desired q and we can simply set r = 0. So we
now assume that 0 ̸∈ S.
Since 0 is not in S, then b ̸= 0 as if b were zero then b− a · 0 = 0. Now if b > 0
then b− a · 0 ∈ S and thus S ̸= ∅, if b < 0 and a > 0 then b− a · (2b) > 0 thus
b− a · (2b) ∈ S and again S is not empty, if a < 0 then the same can be said of
b − (−1) · a · (2b). Therefore S ̸= ∅ and hence we can use WOP to determine
that there must be a smallest element, name this element r. By the definition
of S we can find an integer q such that r = b− aq. Thus b = aq + r and r ≥ 0.
For the sake of contradiction assume that r > |a|, hence r − a > 0 when a > 0
and r + a > 0 when a > 0.
Case 1: Assume a > 0
Next note that b − a(q − 1) = b − aq + a = r + a > 0 thus b − a(q + 1) ∈ S,
yet b− a(q + 1) < b− aq a contradiction to r being the smallest member of S,
hence r ≤ a = |a| as desired.
Case 2: Assume a < 0
Now note that b − a(q − 1) = b − aq + a = r + a > 0 thus b − a(q − 1) ∈ S,
yet b− a(q − 1) < b− aq a contradiction to r being the smallest member of S,
hence r ≤ −a = |a| as desired. ■
Proposition 6.12.7 The Fundamental Theorem of Arithmetic. Every
natural number greater than 1 is either prime or can be expressed as a product
of primes.

Proof of The Fundamental Theorem of Arithmetic. For this proof we will use
PCI
(i) (Base Case):
Our base case is 2 in this example as we are trying to prove the statement for
any m > 1. So consider 2 ∈ N by Lemma 6.12.4, p. 121 anything that divides
2 must be less than or equal to 2, and hence it is either 1 or 2, and thus 2 is
prime, hence we have established our base case.
(ii) (Induction Assumption):
Assume we can find an n ∈ N such that for any t ∈ N such that 1 < t < n then
t is either prime or can be expressed uniquely as a product of primes.
(iii) (Prove: P(n))
By Example 6.12.5, p. 121 we can find an integer q and a prime number p such
that n = qp. By Lemma 6.12.4, p. 121 we have that q < n. If q = 1 then
n is prime and we are done, so assume that q > 1. Since 1 < q < n by our
induction assumption we can write q as a product of primes, denote this as
q =

∏s
i=1 pi for some s ≥ 1 and each pi is a prime. Thus n = (

∏s
i=1 pi) · p

hence we have written n as a product of primes. ■

6.13 Exercises
1. Use Induction to prove that the following hold

(a)
n∑

i=1

2i = 2n+1 − 2 for all m ≥ 1
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(b)
n∑

i=1

(2i− 1)3 = n2(2n2 − 1) for all m ≥ 1

(c)
n∏

i=1

(2i− 1) =
(2n)!

n!2n
for all m ≥ 1

(d)
m∑
i=1

(3i− 2) =
m

2
(3m− 1) for all m ≥ 1

(e)
m∑
i=1

(2i− 1)3 = m2(2m2 − 1) for all m ≥ 1

(f)
m∑
i=1

i

(i+ 1)!
= 1− 1

(m+ 1)!

(g)
m∑
i=0

3i =
3m+1 − 1

2
for all m ∈ N

(h) f1 + f2 + f3 + ...+ fm = fm+2 − 1 for all m ≥ 1

(i) fm+6 = 4fm+3 + fm for all m ≥ 1

(j) f3m+2 is odd for all m ≥ 1

2. Let A = {Ai | i ≤ m} be an indexed family of sets, prove:
(

m⋃
i=1

ai

)c

=

m⋂
i=1

Ac
i for all m ≥ 1



Chapter 7

Relations

This is chapter involves itself with one of most important concepts of all of
mathematics. It is the concept of relationship. This concept has already been
explored (admittedly very little as I tried my best to avoid it) in this course
but has been a major component of your traditional mathematics education.

In this course it has been seen with the little we have done with inequalities
and even addition, believe it or not, but what you will hopefully immediately
notice is the relations you have the most experience with are functions. Using
your the years of intuition when working with the more general concept of
relation will serve you very well in this chapter.

7.1 What is a Relation?
A relation at its heart is a simple a way of formalizing sentences like:

Bart is related to Lisa.
Slightly more formal, we will take two sets and define how the elements of these
sets are related to each other.
Definition 7.1.1 Relations. Let A and B be sets. R is a relation from A
to B if and only if R is a subset of A×B That is,

R ⊆ A×B

When R is a relation from A to A we say it is a relation on A. ♢

Relation Notation and Verbage.

For sets A and B, with a relation R from A to B when

(a, b) ∈ R

we say:

• a is R-related to b

• a is related via R to b

• a is related to b (when R is understood in the context)

When (a, b) ∈ R we will write

aRb

125



CHAPTER 7. RELATIONS 126

and when (a, b) ̸∈ R we will write

a ̸ Rb

Note 7.1.2 Since the empty set ∅, is a subset of any set it is a relation from A
to B. As well since any set is a subset of itself, the set A×B is also a relation
from A to B.

At first glance this definition does not seem to match up with our intuition
at all, and to add to that the notation may seem very unfamiliar. Our next
example hopefully at least motivates the notation.
Example 7.1.3 Lets quickly examine a few relations on the real numbers, R

(A) Equals:
{(a, a) | a ∈ R}

(a, b) ∈ Equals means a = b

This relation can be viewed as the graph of y = x

(B) Less than:
{(a, b) ∈ R× R | a < b}

(a, b) ∈ Less than means a < b

This relation can be visualized as the following shaded region
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□
While admittedly this is quite a verbose way of explaining something that

is already in your lexicon, hopefully this last example helps calm your stomach
or at least motivate the notation, I would like to now step back and look at
this new concept a little more abstractly.
Example 7.1.4 For this example define the following two sets

where Z consists of some animals from the zoo, and F is a set of some
foods.

We will now define the relation, E as the following subset of Z × F

This is the relation of eats. Namely, (a, b) ∈ E means a eats b. For example
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that is

or it is read/visualized more like:

Next, to motivate the wordage a relation from Z to F , we often visualize
using what I refer to as the egg picture, where we draw an arrow from the
element in the set Z to the element in the set F it is related to.

□
For sets A and B a relation from A to B does not need to use every element

of A nor every element of B, we define the elements it does use.
Definition 7.1.5 Domain. The domain of the relation R from A to B is the
set

Dom(R) = {x ∈ A | ∃y ∈ B such that xRy}

♢
Definition 7.1.6 Range. The range of a relation R is the set

Rng(R) = {y ∈ B | ∃x ∈ A such that xRy}

♢
Example 7.1.7 In this example, consider the two sets

A = {1, 2, 3, 4, 5}
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and
B = {a, b, c, d, e}

and define the relation R from A to B defined as

R = {(1, b), (3, a), (4, d), (4, e)}

which can be visualized as:

For this relation we have the following

Dom(R) = {1, 3, 4}

and
Rng(R) = {a, b, d, e}

□

7.2 New Relations From Old
This subsection is dedicated to making new relations from old ones. Our first
method is by turning around the arrows.
Definition 7.2.1 Inverse. If R is a relation from A to B, then the inverse
of R is the relation

R−1 = {(y, x) | (x, y) ∈ R}

♢
Example 7.2.2 We will consider the same sets and relation as in Exam-
ple 7.1.7, p. 127. The inverse is thus

R−1 = {(a, 3), (b, 1), (d, 4), (e, 4)}

which can be visualized as
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Notice we have the following domain and range

Dom(R−1) = {a, b, d, e}

Rng(R−1) = {1, 3, 4}

□
Proposition 7.2.3 Let R be a relation from A to B

(a) Dom(R−1) = Rng(R)

(b) Rng(R−1) = Dom(R)

Proof of Proposition 7.2.3. We will prove part (a) and leave part (b) as an
exercise to the reader
Let R be a relation from A to B.
Prove: Dom(R−1) = Rng(R)
Don’t forget relations are just sets, and to prove equality of sets, you must
prove both subsets!
Proof of Dom(R−1) ⊆ Rng(R−1) :
Let a ∈ dom(R−1). Hence by definition of domain, we can find b ∈ B such
that aR−1b. Hence, by definition of inverse, bRa. Since b ∈ B, by definition of
range, a ∈ rng(R).
Proof of Dom(R−1) ⊇ Rng(R−1) :
Let a ∈ dom(R−1). Hence, by definition of domain, we can find b ∈ B such
that aR−1b. Hence, by definition of inverse, bRa. Since b ∈ B, by definition of
range, a ∈ Rng(R). ■

This next construction is one that may be familiar from your college algebra.
Definition 7.2.4 Composite. Let R be a relation from A to B, and let S
be a relation from B to C. The composite of R and S is

S ◦R = {(a, c) | ∃b ∈ B such that (a, b) ∈ R and (b, c) ∈ S}

♢
Example 7.2.5 For this example consider again the sets

A = {1, 2, 3, 4, 5}
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and
B = {a, b, c, d, e}

but in addition consider the set

and define the relation R from A to B as

R = {(1, c), (2, a), (3, e), (4, a), (4, d)}

and define the relation S from B to C as

Thus we can visulaize the composition as

and the relation is thus defined as

Notice we have the following domain and range of the composition

Dom(S ◦R) = {1, 2, 3, 4}

□
Lets explore a few examples proving using this new concept of composition.

Example 7.2.6 Consider N and S, relations on Z, defined as follows:

N = {(a, b) ∈ Z× Z | 9|(a− b)}
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S = {(a, b) ∈ Z× Z | 6|(a− b)}

Prove: N ◦ S ⊆ {(a, b) ∈ Z× Z | 3|(a− b)}
Proof. As one must do, we assume what we need to assume, namely assume
that N and S are relations on Z defined above.
To begin, choose an arbitrary element x ∈ N ◦ S, since N and S are relations
on Z by definition of composite we can find an a ∈ Z and a b ∈ Z such that
x = (a, b), such that we can find an integer f such that 6|(a− f) and 9|(f − b).
By definition of divides we can find an s ∈ Z and t ∈ Z such that a − f = 6s
and f − b = 9t. Calculate

a− b = (a− f) + (f − b) = 6s+ 9t

= 3(2s+ 3t)

and since 2s+3t is an integer by the definition of divides we can conclude that
3|(a− b), and thus (a, b) ∈ {(a, b) ∈ Z× Z | 3|(a− b)} as desired. ■

□
Definition 7.2.7 Identity Relation. For any set A, the identity relation
on A is the set IA = {(a, a)|a ∈ A} ♢
Proposition 7.2.8 Let A, B, C and D be sets. Let R be a relation from A to
B, S a relation from B to C, and T be a relation from C to D

(a)
(
R−1

)−1
= R

(b) T ◦ (S ◦R) = (T ◦ S) ◦R (composition is associative)

(c) IB ◦R = R and R ◦ IA = R

(d) (S ◦R)−1 = R−1 ◦ S−1

Proof of Proposition 7.2.8. We will prove part (b) and leave the rest as exercises
for the reader.
Suppose that A,B,C, and D are sets. Let R be a relation from A to B, S be
a relation from B to C, and T be a relation from C to D.
Since we are proving an equality, we will have to prove both subsets.
Proof of T ◦ (S ◦ R) ⊆ (T ◦ S) ◦ R
Let a ∈ T ◦(S ◦R), by definition of composition, T ◦(S ◦R) is a relation from A
to D, hence by the definition of relation we can find an x ∈ A and a y ∈ B such
that a = (x, y). Now, as well by definition of composition, S ◦ R is a relation
from A to C, and since T is a relation from C to D, we can find a z ∈ C such
that (z, y) ∈ T and (x, z) ∈ (S ◦ R). Again, by the definition of composition,
since S is a relation from B to C and R is a relation from A to B we can find
w ∈ B such that (x,w) ∈ R and (w, z) ∈ S.
Since (z, y) ∈ T , and (w, z) ∈ S then by definition of composite we have that
(w, y) ∈ (T ◦ S). And since (x,w) ∈ R and (w, y) ∈ (T ◦ S) then by definition
of composite we can conclude that (x, y) ∈ (T ◦ S) ◦R.
Proof of T ◦ (S ◦ R) ⊇ (T ◦ S) ◦ R
For this part, we choose an arbitrary element b ∈ (T ◦ S) ◦ R. Again, by
definition of composition T ◦ S is a relation from B to D and since R is a
relation from A to B, hence (T ◦ S) ◦ R is a relation from A to D, hence we
can find a s ∈ A and a t ∈ D such that b = (s, t). As well, by the definition of
composite we can find u ∈ B such that (s, u) ∈ R and (u, t) ∈ T ◦ S. Yet, by
definition if composite since T is a relation from C to D and S is a relation from
B to C we can find i ∈ C such that (u, i) ∈ S and (i, t) ∈ T . Thus, because
(s, u) ∈ R and (u, i) ∈ S by definition of composite (s, i) ∈ S ◦ R. In a similar
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fashion as we also have (i, t) ∈ T we can conclude that (s, t) ∈ T ◦ (S ◦ R) as
desired.
Since we have shown that both T ◦(S◦R) ⊆ (T ◦S)◦R and T ◦(S◦R) ⊇ (T ◦S)◦R
we can conclude that T ◦ (S ◦R) = (T ◦ S) ◦R. ■

7.3 Equivalence Relations
Equivalence relations show up a lot in your future math courses especially in
algebra and number theory. Yet, before we dive into an equivalence relation
lets look at the three properties which make it up. First up is the reflexive
property.
Definition 7.3.1 Reflexive. We say that a relation R on a set A is reflexive
on A whenever

∀x ∈ A, xRx

♢
For our first example in this section we will return to our cartoons.

Example 7.3.2 Consider the following set A

and consider the relation R on A defined as

or as a set

notice that for every element of A it is in an ordered pair with itself, and
hence R is reflexive. □
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Let see a couple of examples of proof involving reflexive.
Example 7.3.3 Consider the relation S on Z defined as

S = {(a, b) ∈ Z× Z | 3|(a+ 2b)}

Prove: S is reflexive
Proof. To prove this we let a ∈ Z, to show a is included in an order pair with
membership to S amounts to proving an existential.
That is we will need to produce an integer to create an ordered pair with a.
Well, that integer is a.
To see this simply note that

a+ 2a = 3 · (a)

and since a is an integer by definition of divides 3 divides a + 2a, and hence
(a, a) ∈ S.
Since we have chosen a arbitrary we can conclude that S is reflexive as desired.

■
□

Example 7.3.4 Let A be a set, and let R be a relation on A.
Prove: if R is reflexive then Dom(R) = A

Proof. Assume R is reflexive on A. As usual to show equality of sets (don’t
forget relations are sets!) we will need to break our proof into two parts.
Proof of Dom(R) ⊆ A
As usual, let a ∈ Dom(R), hence by definition we can find a b ∈ A such that
(a, b) ∈ R, since R is a relation on A we have that a ∈ A.
Proof of Dom(R) ⊇ A
This time, let x ∈ A, since we have assumed R is reflexive, by definition
(x, x) ∈ R and hence by definition of domain x ∈ Dom(R).
Since we have shown both Dom(R) ⊇ A and Dom(R) ⊆ A we have that
Dom(R) = A as desired. ■

□
The next property that defines an equivalence relation is symmetric.

Definition 7.3.5 Symmetric. We say that a relation R on a set A is
symmetric on A whenever

∀x, y ∈ A, if xRy then yRx

♢
Example 7.3.6 Consider the set

B = {1, 2, 3, 4, 5, 6}
and the relation T on B defined as

T = {(1, 2), (1, 5), (6, 5), (2, 1), (5, 1), (5, 6)}
This relation is symmetric to see this unlike with reflexive we need not check
every element of B we instead check every element of T

Since (1, 2) ∈ T we need (and have) (2, 1) ∈ T

Since (1, 5) ∈ T we need (and have) (5, 1) ∈ T

Since (6, 5) ∈ T we need (and have) (5, 6) ∈ T

now we have exhausted all the elements of T and thus T is indeed symmetric.
□
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Lets explore an example of a proof involving the symmetric property next.
Example 7.3.7 Consider the relation R on Z defined as

R = {(a, b) ∈ Z× Z | 3|(a+ b)}

Prove: R is symmetric
Proof. To prove that R is symmetric we must choose an arbitrary (a, b) ∈ R.
By definition of R 3|(a + b), by definition of divides we can find an integer k
such that a+ b = 3k yet since a+ b = b+ a we have that b+ a = 3k and hence
3|(b+ a) and thus (b, a) ∈ R. Hence R is symmetric. ■

□
Example 7.3.8 Prove: If S is a symmetric relation on A, and R ⊆ S, then
R−1 ⊆ S

Proof. Let R be a relation on the set A. Assume S is a symmetric relation
on A and R ⊆ S. Let x ∈ R−1. Thus by definition of relation, and definition
of inverse, we can find (p, j) ∈ A such that x = (p, j). Thus, by definition
of inverse, (j, p) ∈ R. Thus by our assumption and the definition of subset,
(j, p) ∈ S. And, since S is symmetric, (p, j) ∈ S. Since (p, j) = x, x ∈ S
Since x ∈ R−1 and x ∈ S, by definition of subset, R−1 ⊆ S ■

□
The final property which makes an equivalence relation is transitive.

Definition 7.3.9 Transitive. We say that a relation R on a set A is tran-
sitive on A whenever

∀x, y, z ∈ A, if xRy and yRz, then xRz

♢
Example 7.3.10 Consider the relation T on Z defined as

T = {(a, b) ∈ Z× Z | 6|(a− b)}

Prove: T is transitive on Z

Proof. To prove that T is transitive we must choose two elements (a, b) ∈ T
and (b, c) ∈ T .
By definition of T both 6|(a−b) and 6|(b−c). Hence by the definition of divides
we can find s ∈ Z and t ∈ Z such that a− b = 6s and b− c = 6t. Calculate:

a− c = (a− b) + (b− c) = 6s+ 6t

= 6(s+ t)

since s + t is an integer we can conclude that 6|(a − c) and hence (a, c) ∈ T .
Therefore by the definition of transitive T is transitive. ■

□
Example 7.3.11 Prove: R is transitive if and only if R ◦R ⊆ R
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Proof. Let R be a relation on a non-empty set A
Proof of R is transitive =⇒ R ◦ R ⊆ R
Assume R is transitive. Let (x, y) ∈ R ◦ R. By definition of composition, we
can find z ∈ A such that (x, z) ∈ R and (z, y) ∈ R. Since R is transitive,
(x, y) ∈ R.
Since (x, y) ∈ R ◦R and (x, y) ∈ R, by definition of subset, R ◦R ⊂ R.
Proof of R is transitive ⇐= R ◦ R ⊆ R
Assume R ◦ R ⊆ R. Let (x, y) ∈ R and (y, z) ∈ R. Since (x, y) ∈ R and
(y, z) ∈ R, by definition of composition, (x, z) ∈ R◦R. Hence by our assumption
that R ◦R ⊆ R, and definition of subset, (x, z) ∈ R.
Thus, by definition of transitive, R is transitive. ■

□
Proposition 7.3.12 Let A be a non-empty set. For the power set P(A), the
relation ”is a subset of” is reflexive on P(A), and transitive, but not symmetric.

Proof of Proposition 7.3.12. [Reflexive]
Let X ∈ P(A). (Need To Show: X ⊂ X) Assume a ∈ X. Hence, a ∈ X, thus
by definition of subset, X ⊂ X and hence ”subset of” is reflexive.
[Transitive]
Let X,Y, Z ∈ P(A) such that X ⊂ Y and Y ⊂ Z. Let a ∈ X. Thus by
definition of subset, since X ⊂ Y , a ∈ Y . Since Y ⊂ Z, and a ∈ Y , a ∈ Z
Thus, by definition of subset, since a ∈ X and a ∈ Z, x ⊂ Z. Hence ”subset
of” is transitive.
[NOT Symmetric]
notice ∅ ⊂ A but A ̸⊂ ∅ as we assumed that A was not empty hence ”subset
of” is not symmetric. ■

Now we have collected all of the properties which make an equivalence
relation, the definition is almost self evident.
Definition 7.3.13 Equivalence Relation. A relation R on a set A is an
equivalence relation on A if R is reflexive, symmetric, and transitive on A.

♢
Example 7.3.14 Consider the relation E on Z defined as

E = {(a, b) ∈ Z× Z | 5|(a− b)}

Prove: E is an equivalence relation
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Proof. The definition of equivalence relation has three properties:

• reflexive

• symmetric

• transitive

thus a proof that a relation is an equivalence relation should be split into three
parts.
Proof of Reflexive:
To see that E is reflexive we start with an arbitrary element a ∈ Z. Now for
this relation we can calculate:

a− a = 0

= 5 · 0

since 0 is an integer a−a is thus divisible by 5, and hence (a, a) ∈ E as desired.
Therefore E is reflexive.
Proof of Symmetric:
To show that E is symmetric we begin by choosing a pair (b, c) ∈ Z × Z such
that (b, c) ∈ E. By the definition of E 5|(b− c) thus by definition of divides we
can find an integer k so that b − c = 5k and hence c − b = −5k and since −k
is an integer by definition of divides 5 divides c− b thus (c, b) ∈ E; therefore E
is symmetric.
Proof of Transitive:
To prove E is transitive we begin with two arbitrary elements of E, namely
(d, e) ∈ E and (e, f) ∈ E. By definition of E 5 divides both d − e and e − f ,
thus by definition of divides we can find integers r and s such that d− e = 5r
and e− f = 5s. Now calculate:

d− f = (d− e) + (e− f) = 5r + 5s

= 5(r + s)

siince r+s is an integer we have that d−f is divisible by 5 and thus (d, f) ∈ E
and hence E is transitive.
As we have shown that E is reflexive, symmetric and transitive we have have
verified that E is an equivalence relation as desired! ■

□
For the next example we will find the following definition and lemma help-

ful.
Definition 7.3.15 Parity. We say that two integers have the same parity
when either both are even or both are odd. ♢
Lemma 7.3.16 For any integers a and b if a+ b is divisible by 2 then a and
b have the same parity.

Proof of Lemma 7.3.16. We will approach this proof exhaustive, using
Lemma 4.6.1, p. 52 to break us into cases.
Case 1: a is even and b is even
In this case we assume that we can find integers k and ` so that a = 2k and
b = 2`. Calculate

a+ b = 2k + 2`

= 2(k + `)

since k + ` is an integer we have that a + b is even, hence when a and b are
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both even that a+ b is even.
Case 2: a is odd and b is even
In this case we assume that we can find integers s and t so that a = 2s+1 and
b = 2t. Calculate

a+ b = (2s+ 1) + 2t

= 2(s+ t) + 1

since s+ t is an integer we have that a+ b is odd. Hence when a is odd and b
is even then a+ b is odd.
Case 3: a is even and b is odd
In this case we assume we can find integers r and v so that a = 2r and b = 2v+1.
Calculate

a+ b = 2r + (2v + 1)

= 2(r + v) + 1

since r+ v is an integer we have that a+ b is odd. Hence with a is even and b
is odd a+ b is odd
Case 1: a is odd and b is odd
In this final case we assume we can find integers n and m so that a = 2n + 1
and b = 2m+ 1. Calculate

a+ b = (2n+ 1) + (2m+ 1)

= 2n+ 2m+ 1 + 1 = 2n+ 2m+ 2

= 2(n+m+ 1)

since n+m+1 is an integer we conclude that a+ b is even. Therefore when a
is odd and b is odd we have that a+ b is even.
Therefore we see that the only time that a+ b is even is exactly when a and b
have the same parity. ■
Example 7.3.17 Consider the relation R on Z defined as

R = {(a, b) ∈ Z× Z | 2|(a+ b)}

Prove: R is an equivalence relation
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Proof. As we are proving that R is an equivalence relation we should split it
into three parts.
Proof of Reflexive:
To show reflexive we start with an arbitrary element a ∈ Z, then calculate

a+ a = 2a

and since a is an integer we have that a+ a divisible by 2 and hence (a, a) ∈ R
and thus R is reflexive.
Proof of Symmetric:
To prove that R is symmetric choose an arbitrary element (x, y) ∈ R, thus by
definition of R we have that 2|(x+ y) hence we can find an integer k such that
x+ y = 2k, yet note that y + x = x+ y = 2k hence y + x is divisible by 2 and
therefore (y, x) ∈ R and hence R is symmetric.
Proof of Transitive:
To prove transitive we choose elements of R, namely (b, c) ∈ R and (c, d) ∈ R.
By definition of membership to R we have that 2|(b+ c) and 2|(c+ d), that is
that both b+ c and c+ d are even.
By Lemma 7.3.16, p. 136 and Lemma 4.6.1, p. 52 we can break the rest of our
proof in to a couple of cases.
Case 1: c is even
Assume that c is even, by Lemma 7.3.16, p. 136 since we have that both b+ c
is even and c + d is even we can conclude that both c and d are even. Hence
by the definition of even we can find integers n and m such that c = 2n and
d = 2m. Calculate

b+ d = 2n+ 2m

= 2(n+m)

since n+m is an integer we have that 2|(b+ d) thus (b, d) ∈ R as desired.
Case 1: c is odd
Assume that c is odd, by Lemma 7.3.16, p. 136 then both b and d are odd as
we have that both b+ c and c+ d are even. By definition of even we can find
two integers s and t such that b = 2s+ 1 and d = 2t+ 1. Calculate

b+ d = (2s+ 1) + (2t+ 1)

= 2s+ 2t+ 2

= 2(s+ t+ 1)

since s+ t+1 is an integer we have that 2|(b+d) and thus (b, d) ∈ R as desired.
Hence in both cases we have that R is transitive.
As we have shown that R is reflexive, symmetric and transitive we have have
verified that R is an equivalence relation as desired! ■

□
Example 7.3.18 Let A be a set and let both R and S be relations on A.

Prove: if R and S are equivalence relations then R ∩ S is an equivalence
relation.
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Proof. Let A be a set and let both R and S be relations on A and assume
both R and S are equivalence relations. To prove that R ∩ S is an equivalence
relation we should break it down into the three conditions.
Proof of Reflexive:
To prove reflexive, we begin with an arbitrary element a ∈ A. Since R and S
are equivalence relations they are in particular reflexive we have that (a, a) ∈ R
and (a, a) ∈ S, hence by definition of intersection (a, a) ∈ R ∩ S thus R ∩ S is
reflexive.
Proof of Symmetric:
To prove symmetric, we choose an element (x, y) ∈ R ∩ S. By definition of
intersection both (x, y) ∈ R and (x, y) ∈ S. Since both R and S are equivalence
relations in particular they are both symmetric and hence (y, x) ∈ R and
(y, x) ∈ S, thus by the definition of intersection (y, x) ∈ R∩S. Therefore R∩S
is symmetric.
Proof of Transitive:
To prove transitive we start with elements (r, s) ∈ R ∩ S and (s, t) ∈ R ∩ S,
by definition of intersection we have that (r, s) ∈ R, (r, s) ∈ S, (s, t) ∈ R and
(s, t) ∈ S. Since both R and S are equivalence relations, in particular they
are transitive we have that (r, t) ∈ R and (r, t) ∈ S, hence by definition of
intersection (r, t) ∈ R ∩ S. Therefore R ∩ S is transitive.
Hence since we have shown that R ∩ S is reflexive, symmetric, and transitive
we have that R ∩ S is an equivalence relation. ■

□
An equivalence relation has a natural subdivision on the set it is on.

Definition 7.3.19 Equivalence Class. Let R be an equivalence relation on
a set A. For x ∈ A the equivalence class of x modulo R is the set

x̄ := {y ∈ A | xRy}

Each element of x̄ is called a representative of this class. ♢
Definition 7.3.20 Modulo. The set

A/R = {x̄ | x ∈ A}

of all equivalence classes is called A modulo R (A mod R) ♢
Example 7.3.21 Consider the set

A = {0, 1, 2, 3, 4}

and define the relation R on A as follows

R = {(a, b) ∈ A×A | 3|(a+ 2b)}

We claim that this is an equivalence relation of A, yet since we just have a
finite set lets just go through and find all the relations, namely

R = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (0, 3), (3, 0), (1, 4), (4, 1)}

We can then go through and check that all the properties of an equivalence
relation, notice for example that the following are all members of R (0,0), (1,1),
(2,2), (3,3), (4,4) and hence R is reflexive.

To continue note the following are all members of R

(0, 0) and (0, 0)

(1, 1) and (1, 1)
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(2, 2) and (2, 2)

(3, 3) and (3, 3)

(4, 4) and (4, 4)

(0, 3) and (3, 0)

(1, 4) and (4, 1)

and hence R is symmetric. For transitive we check them all again that all of
the following are members of R

(0, 0), (0, 3) and (0, 3)

(0, 3), (3, 0) and (0, 0)

(3, 3), (3, 0) and (3, 0)

(0, 3), (3, 3) and (0, 3)

(1, 1), (1, 4) and (1, 4)

(4, 1), (1, 1) and (4, 1)

(4, 4), (4, 1) and (4, 1)

(4, 1), (1, 1) and (4, 1)

(1, 4), (4, 4) and (1, 4)

Now note the following equivalence classes:

0̄ = 3̄ = {0, 3}
1̄ = 4̄ = {1, 4}

2̄ = {2}

□
Proposition 7.3.22 Let R be an equivalence relation on a nonempty set A.
For all x and y in A,

a.) x ∈ x̄ and x̄ ⊆ A

b.) xRy if and only if x̄ = ȳ

c.) x is not related to y if and only if x̄ ∩ ȳ = ∅

Proof of Proposition 7.3.22. We prove part (a) and part (b), leaving part (c)
as an exercise.
Proof of part (a)
Proof of x ∈ �x
Let x ∈ A, since R is an equivalence relation, in particular it is reflexive, thus
xRx, hence by definition of x̄, x ∈ x̄
Proof of �x ⊆ A
Let ` ∈ x̄. Thus by definition of x̄, xR`. Hence, (x, l) ∈ R. Since R is a relation
on A, R ⊆ A×A. Hence by definition of cross product, ` ∈ A.
Proof of (b) xRy if and only if x̄ = ȳ
Let R be a relation on a non-empty set A
Proof of xRy =⇒ �x = �y
Let (x, y) ∈ R, as our objective is to prove equality of sets we should break it
into two parts.
Proof of �x ⊆ �y
Let a ∈ x̄. Thus by definition of equivalence class xRa. Since R is an equiv-
alence relation, it is symmetric, and as we assumed (x, y) ∈ R, we can thus
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conclude (y, x) ∈ R. Since R is an equivalence relation, it is also transitive.
And since we already concluded (y, x) ∈ R and (x, a) ∈ R we can now conclude
(y, a) ∈ R.
Thus by definition of equivalence class, a ∈ ȳ. Thus by definition of subset,
x̄ ⊆ ȳ.
Proof of �x ⊇ �y
let a ∈ ȳ. Thus by definition of equivalence class yRa. Since R is an equivalence
relation, it is transitive. And since we already concluded (x, y) ∈ R and (y, a) ∈
R, we can now conclude (x, a) ∈ R.
Thus by definition of equivalence class, a ∈ ȳ. Thus by definition of subset,
x̄ = ȳ
Proof of xRy ⇐= �x = �y
Let x ∈ A and y ∈ A such that x̄ = ȳ. Since R is an equivalence relation, it
is reflexive. Hence, xRx. Thus by definition of x̄, x ∈ x̄. Since we assumed
x̄ = ȳ, in particular x̄ ⊆ ȳ, x ∈ ȳ. By definition of ȳ, yRx. Since R is an
equivalence relation, it is symmetric. Since we concluded (y, x) ∈ R, we can
conclude (x, y) ∈ R ■

7.4 Partitions
When I say partition you already have a sense of the word, like wall or a fence,
it brings to mind separate areas or groups. We make this concept inside of a
set more formal in our following definition.
Definition 7.4.1 Partition. Let A be a non-empty set. P is a partition
of A if P is a set of subsets of A such that:

(i) If X ∈ P, then X ̸= ∅

(ii) If X ∈ P and Y ∈ P, then X = Y or X ∩ Y = ∅

(iii)
⋃

X∈P

X = A

♢
This is quite rigorous of a definition but do not loose that this is simply

separating things into separate non-overlapping groups somewhat like a drawer
organizer.
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Sets at their heart have no defining characteristics, so we often draw them
as blobs with no discernible shape so as we do not accidentally divine some
pattern that does not exist. We then visualize a partition as a sectioning off
of this amorphous blob as in the following figure, where we have an arbitrary
set A and a family of subsets X = {X1, X2, X3, X4, X5, X6, X7, X8} which
partition A.

Example 7.4.2 Consider the set T containing the following elements
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and consider the family of subsets S = {S1, S2, S3, S4}, where each set is
defined as follows

Notice that all of the subsets are non-empty (condition (i))any two sets that
are not the same share no toys (condition (ii)), and that they indeed include
all of the toys (condition (iii))

□
Example 7.4.3 Consider the family of set A = {An | n ∈ N} where each set
is defined as follows for any n ∈ N

An = {a ∈ Z | 3|(a− n)}

Prove: A is a partition of Z.
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Proof. There are three conditions to being a partition, so we will split our
proof into three parts:
Condition (i)
Let n ∈ N, notice that (n − n) = 0 = 3 · 0 and since 0 is an integer we can
conclude that 3 divides n− n and hence n ∈ An.
Therefore for any n ∈ N we have that An ̸= ∅, thus proving that A satisfies
condition (i) of a partition.
Condition (ii)
Let r and s be arbitrary natural numbers, assume that Ar ∩ As ̸= ∅, and
hence we can find at least one mutual element of Ar and As, name one of these
elements y ∈ Ar ∩As. By definition of Ar and As we have that both 3|(r − y)
and 3|(s−y). By definition of divides we can find two integers k and m so that
r − y = 3k and s− y = 3m, hence we can calculate

r − s = (r − y)− (s− y) = 3k − 3m = 3(k −m)

For a similar calculation,

s− r = (s− y)− (r − y) = 3m− 3k = 3(m− k)

(If perhaps you have felt lost in this proof so far, we are using the concluding
an or technique from Section 3.28, p. 44) It is our desire to show equality of
these two sets, as usual, breaking our proof in to two more parts
Proof of Ar ⊆ As
let x ∈ Ar by definition of Ar this means that 3|(r − x) thus by definition of
divides we can find a w ∈ Z such that r − a = 3w, thus calculate

s− x = (r − x)− (r − s) = 3w − 3(k −m) = 3(w − k +m)

and since w − k +m is an integer we can conclude that 3 divides s− x hence
we have that x ∈ As as desired.
Proof of Ar ⊇ As
let z ∈ As by definition of As this means that 3|(s− z), by definition of divides
we can find an integer t so that s− z = 3t. Now calculate

r − z = (s− z)− (s− r) = 3t− 3(m− k) = 3(t−m+ k)

since t−m+ k is an integer we have that 3 divides r − z and hence z ∈ Ar as
desired.
since we have shown both Ar ⊆ As and we have shown Ar ⊇ As we can
conclude that Ar = As. Furthermore, this proves that A satisfies condition
(ii) of being a partition.
Condition (iii)
For this last condition we again should show to containments of sets
Proof of

⋃
n∈N

An ⊆ Z

For this part let p ∈
⋃
n∈N

An, by definition of union over a family, we can find a

b ∈ N such that p ∈ Ab, yet by definition of Ab we have that p ∈ Z as desired.
(most texts would call this the obvious direction)
Proof of

⋃
n∈N

An ⊇ Z

Now, let q ∈ Z, Calculate q − q = 0 = 3 · 0 and since 0 is an integer we have
that 3 divides q − q, hence q ∈ Aq therefore q ∈

⋃
n∈N

An as desired.

Since we have shown both
⋃
n∈N

An ⊆ Z and
⋃
n∈N

An ⊇ Z we can conclude⋃
n∈N

An = Z, thus A satisfies condition (iii) of being a partition.

Since we have shown the three conditions of being a partition we can conclude
that A is a partition. ■
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□
It turns out that this last example is actually a quite apt example of par-

titions. Partitions turn out not to be something new, they are actually just
equivalence relations. We make this comment more precise in the following
two propositions.
Proposition 7.4.4 If R is an equivalence relation on a non-empty set A then
A/R is a partition of A.

Proof of Proposition 7.4.4. Let R be an equivalence relation on a non-empty
set A.
There are three conditions to being a partition, so we will split our proof into
three parts
Condition (i)
Let x ∈ A, then since R is an equivalence relation, in particular R is reflexive,
thus we have xRx thus x ∈ x̄ and hence x̄ ̸= ∅, thus A/R satisfies condition (i)
of being a partition.
Condition (ii)
let a ∈ A and b ∈ A, and assume that ā ∩ b̄ ̸= ∅, then by Proposition 7.3.22,
p. 140 (b) we can conclude that ā = b̄, and hence A/R satisfies condition (ii)
of being a partition.
Condition (iii)
We will split this condition into two parts
Proof of

⋃
y∈A

�y ⊆ A

Let s ∈
⋃
y∈A

ȳ, hence we can find a t ∈ A such that s ∈ t̄, by Proposition 7.3.22,

p. 140 (a) we have that t̄ ⊆ A and hence s ∈ A as desired.
Proof of

⋃
y∈A

�y ⊇ A

Let c ∈ A, then since R is an equivalence relation, in particular it is reflexive,
thus cRc and hence c ∈ c̄ therefore c ∈

⋃
y∈A

ȳ as desired.

Since we have shown that both
⋃
y∈A

ȳ ⊆ A and
⋃
y∈A

ȳ ⊇ A we can conclude that⋃
y∈A

ȳ = A, therefore we have shown that A/R satisfies condition(iii) of being

a partition.
Since we have shown the three conditions of being a partition we can conclude
that A is a partition. ■
Proposition 7.4.5 Let P be a partition of a nonempty set A. For x and
y ∈ A define xQy if and only if there exists C ∈ P such that x ∈ C and y ∈ C.
Then Q is an equivalence relation on A.

Proof of Proposition 7.4.5. We will prove the three conditions for Q to be an
equivalence relation.
[Reflexive]
let x ∈ A. Since P is a partition,

⋃
X∈P

X = A we have that x ∈
⋃

X∈P

X.

Hence we can find a C ∈ P such that x ∈ C. Hence, (x, x) ∈ Q, since x ∈ C
and x ∈ C.
[Symmetric]
Let (x, y) ∈ Q. By definition of Q we can find D ∈ P such that x ∈ D and
y ∈ D. Hence, y ∈ D and x ∈ D. Thus by definition of Q, (y, x) ∈ Q.
[Transitive]



CHAPTER 7. RELATIONS 147

Let (x, y) ∈ Q and (y, z) ∈ Q. By definition of Q we can find C1, C2 ∈ P such
that x ∈ C1 and y ∈ C1, and y ∈ C2 and z ∈ C2. Hence, y ∈ C1 ∩ C2. Hence
C1 ∩ C2 ̸= ∅. Hence by definition of partition, C1 = C2. Hence x ∈ C and
z ∈ C. Hence by definition of Q, (x, z) ∈ Q.
Since Q satisfies the three conditions of being an equivalence relation it is an
equivalence relation as desired. ■

7.5 Functions
Functions are important no matter the field you go into, and you have had
a lot of experience with functions up to this point. Let’s now formalize the
definition of function as a specific type of relation.
Definition 7.5.1 Function. A function, or mapping, from A to B is a
relation f from A to B such that:

(i) The domain of f is A.

(ii) If (x, y) ∈ f and (x, z) ∈ f then y = z

For a function f we write
f : A → B

We say
”f is a function from A to B”

or
”f maps A to B”

The set B is called the codomain of f .
In the case where B = A, we say that

f is a function on A”

When (x, y) ∈ f , we write y = f(x). ♢
At first glance condition (ii) may look foreign to you, yet in your calculus

and college algebra classes you probably just called this the vertical line test,
seen in this next example.
Example 7.5.2 We saw that equals was a relation at the beginning of this
chapter in Example 7.1.3, p. 125, indeed it is also a function. To use it in the
our new context of functions, define the function

f : R → R

as
f(x) = x
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Notice that where we choose to draw a vertical line is the choice of an
element of the domain of f , i.e. an element of R, and the condition that the
vertical line only hits the graph once is the condition the f(x) has only one
output, as is condition (ii) of being a function. □
Example 7.5.3 Notice that the eats relation from Example 7.1.4, p. 126 is not
a function as both

and

So lets consider a slightly different relation, by putting the turtle on a diet,

D : Z → F

defined as the following

Now it makes sense to use the of notation of functions because for example
there is only one way to write the following:

□
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Example 7.5.4 Consider the relation f from Z× Z to Z defined as

f = {((a, b), c) ∈ Z× Z× Z | c = 3a+ 2b}

Prove: f is a function
Proof. To prove that f is a function we need to show the two conditions of
being a function.
Condition (i)
The first condition is an equality of sets, per usual we will split this into two
parts
Proof of Dom(f) ⊆ Z× Z
Let (a, b) ∈ Dom(f) by definition of f we have that (a, b) ∈ Z × Z as desired.
(the room chants obviously!)
Proof of Dom(f) ⊇ Z× Z
Let (x, y) ∈ Z× Z, then ((x, y), 3x+ 2y) ∈ f by definition of f , as desired.
Since we have shown both Dom(f) ⊆ Z × Z and Dom(f) ⊇ Z × Z we can
conclude Dom(f) = Z×Z. Therefore we have shown that f satisfies condition
(i) of being a function.
Condition (ii)
Assume ((n,m), c) ∈ f and ((n,m), d) ∈ f , hence by definition of f we have
that c = 3n+ 2m and that m = 3n+ 2m hence c = d as desired.
Since we have shown both conditions to be a function we can conclude that f
is a function. ■

□
The jump from relations to functions can be jarring to students especially

with all of the corresponding notations, we take a moment now and attempt
to make sense of them.

Functions VS Relations.

Let A and B be sets, and consider a function f : A → B.
At the root a function is just a relation and hence f ⊆ A×B
Instead of writing

(x, y) ∈ f

or
xfy

we write
f(x) = y,

moreover we most often don’t write the y, that is we have

x ∈ A and f(x) ∈ B.

To put this context of relations once again (and hopefully not make
it too much more convoluted) we have

(f, f(x)) ∈ f

and perhaps the most labyrinthine interpretation where f represents
the relation f and f(x) is the element of B related to x via f .

x f f(x)

The next concepts come up over and over again in algebra, analysis and
topology.
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Definition 7.5.5 Image. Let f : A → B, and let X ⊆ A, The image of X
(or image set) is defined as

f(X) = {y ∈ B | y = f(x) for some x ∈ X}

♢
Example 7.5.6 Consider the following set T

and the subset X ⊆ T

Now define the funciton f : T → T as follows

Then we can visualize the image of X, f(X), as follows

□
Definition 7.5.7 Inverse Image. Let f : A → B, and let Y ⊆ B, The
inverse image of X (or inverse image set) is defined as

f−1(Y ) = {x ∈ A | f(x) ∈ Y }

♢
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Note 7.5.8 The inverse image should not be confused with the inverse relation.
Example 7.5.9 Consider the same set and function from Example 7.5.6, p. 149.
This time define the subset S ⊆ T as

We can then visualize the preimage of S, f−1(S), as follows.

□
Proposition 7.5.10 Let f : A → B,C and D be subsets of A, and E and F
be subsets of B.

(a) f(C ∩D) ⊆ f(C) ∩ f(D)

(b) f−1(E ∩ F ) = f−1(E) ∩ f−1(F )

Proof of Proposition 7.5.10. Proof of (a)
Let x ∈ f(C ∩D). Thus by definition of image, we can find a j ∈ C ∩D such
that f(j) = x. By definition of intersect, j ∈ C and j ∈ D. Since j ∈ C, by
definition of image, x ∈ f(C) as well. Since j ∈ D, by definition of image,
x ∈ f(D). Thus, by definition of intersection, x ∈ f(C) ∩ f(D).
Proof of (b)
To show equality we should as usual break it into two parts.
Proof of f−1(E ∩ F) ⊆ f−1(E) ∩ f−1(F)
Let x ∈ f−1(E ∩ F ). Thus by definition of inverse image, f(x) ∈ E ∩ F . Thus
by definition of intersection, f(x) ∈ E and f(x) ∈ F . By definition of inverse
image, x ∈ f−1(E) and x ∈ f−1(F ). Hence, by definition of intersection,
x ∈ f−1(E) ∩ f−1(F ).
Proof of f−1(E ∩ F) ⊇ f−1(E) ∩ f−1(F)
Let y ∈ f−1(E) ∩ f−1(F ) hence by definition of intersection y ∈ f−1(E) and
y ∈ f−1(F ). By definition of inverse image we have that both f(y) ∈ E
and f(y) ∈ F hence by definition of intersection we have that f(y) ∈ E ∩ F .
Therefore by definition of preimage we have that y ∈ f−1(E ∩ F ) as desired.
Since we have shown f−1(E ∩ F ) ⊆ f−1(E) ∩ f−1(F ) and f−1(E ∩ F ) ⊇
f−1(E) ∩ f−1(F ) we can thus conclude f−1(E ∩ F ) = f−1(E) ∩ f−1(F ) ■

Let’s end this section with a couple more examples of proofs involving these
new concepts.
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Example 7.5.11 Let f : A → B,D ⊆ A and E ⊆ B
Prove: f(f−1(E)) ⊆ E

Proof. Let x ∈ f(f−1(E)). By the definition of image, we can find y ∈ f−1(E)
such that f(y) = x. By definition of inverse image, f(y) ∈ E. Thus, since
f(y) = x we have that x ∈ E, therefore f(f−1(E)) ⊆ E. ■

□
Example 7.5.12 Let f : A → B, and let X ⊆ A, Y ⊆ A, U ⊆ B, and V ⊆ B.

Prove: f−1(U)− f−1(V ) = f−1(U − V ).
Proof. As this is a proof of equality of sets we should break the proof into two
pieces.
Proof of f−1(U)− f−1(V) ⊆ f−1(U − V)
Let x ∈ f−1(U) − f−1(V ). By defintion of difference, x ∈ f−1(U) and x ̸∈
f−1(V ). By definition of inverse image, f(x) ∈ U and f(x) ̸∈ V . By definition
of difference, f(x) ∈ U −V . Thus, by definition of inverse image, x ∈ f−1(U −
V ).
Proof of f−1(U)− f−1(V) ⊇ f−1(U − V)
Let y ∈ f−1(U − V ) by definition of inverse image f(y) ∈ U − V , by definition
of difference f(y) ∈ U and f(y) ̸∈ V hence by definition of inverse image y ∈
f−1(U) and y ̸∈ f−1(V ), thus by definition of difference y ∈ f−1(U)− f−1(V )
Since we have shown both f−1(U) − f−1(V ) ⊆ f−1(U − V ) and f−1(U) −
f−1(V ) ⊇ f−1(U − V ) we can conclude f−1(U)− f−1(V ) = f−1(U − V ) ■

□

7.6 Bijections
The concept of something being the same as something else is ubiquitous in
mathematics. In this course we have already seen that equals is not as easy as
it may of first seemed when dealing with sets. The bijection is how we go about
in our combinatorics, algebra, and many other classes to show two objects we
are studying are the same.
Definition 7.6.1 Surjection. A function f : A → B is onto B, or is a
surjection means

Rng(f) = B.

When f is a surjection, we write

f : A ↠ B

or
f : A

onto→ B.

♢
Example 7.6.2 A function that is surjective just needs to hit every element
in the codomain. Consider the two sets

A = {1, 2, 3, 4, 5}

and
B = {a, b, c, d, e}

and consider the function f : A → B defined as
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□
Example 7.6.3 Consider the function f : Z × Z → Z from Example 7.5.4,
p. 148 defined as

f(a, b) = 3a+ 2b

Prove: f is surjective
Proof. The definition of surjective involves an equality of sets, so we break our
proof into two parts.
Proof of Rng(f) ⊆ Z
Let c ∈ Rng(f) by definition of range we can find an (a, b) ∈ Z × Z such that
f(a, b) = c, yet by definition of f we have that f(a, b) = 3a+ 2b, since both a
and b are integers we can conclude that 3a+2b is an integer and thus c ∈ Z as
desired.
Proof of Rng(f) ⊇ Z
Let z ∈ Z, by Proposition 6.12.6, p. 121 we can find two integers q and r such
that 0 ≤ r < 3 such that q = 3z + r. Since 0 ≤ r < 3 we have that r = 0 or
r = 1 or r = 2, splitting our proof into 3 cases
Case 1: Assume r = 0
In this case since q ∈ Z and 0 is also an integer we have that z = 3q + 2 · 0
hence f(q, 0) = z and thus z ∈ Rng(f) as desired.
Case 2: Assume r = 1
For this case note that r = 1 = 3 − 2 hence q + 1 and -1 are integers we have
that z = 3q+3−2 = 3(q+1)+(−1) ·2 hence f(q+1,−1) = z thus z ∈ Rng(f)
as desired.
Case 3: Assume r = 2
In this case since q and 1 are integers we have that z = 3q+2 hence f(q, 1) = z,
therefore z ∈ Rng(f) as desired.
Because we have shown no matter what r is that z ∈ Rng(f) we can conclude
that z ∈ Rng(f)
Since we have shown both Rng(f) ⊆ Z and Rng(f) ⊇ Z we can conclude
Rng(f) = Z, therefore we have shown that f is surjective. ■

□
Before we jump into our next example, lets shed a little light on composing

functions.
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Composing Functions.

Once again functions are just relations, thus we have already defined
how to compose them.

For example considering three sets A, B, and C and two functions
f : A → B and g : B → C we can then consider the composition

g ◦ f : A → C.

When we were dealing with relations we would have taken a pair
(a, c) ∈ g ◦ f to only be a member of g ◦ f when we could find an
element b ∈ B such that (a, b) ∈ f and (b, c) ∈ g, with a function this
element is self evident, it is f(a) since

(a, b) ∈ f

means
f(a) = b.

Furthermore, since Dom(f) = A we know we have such a b (another
reason that the notation f(a) even makes sense).

That is we interpret the composition of functions as

g ◦ f(x) = g(f(x))

Example 7.6.4 Let f : A → B and g : B → C be functions.
Prove: If g ◦ f is surjective then g is surjective

Proof. Assume that g ◦ f is surjective. To prove that g is surjective we need
to show an equality of sets, so break it into the usual parts.
Proof of Rng(g) ⊆ C
Let y ∈ Rng(g) by definition of range we can find an x ∈ B such that g(x) = y
hence by definition of g we have that g(x) ∈ C as desired.
Proof of Rng(g) ⊇ C
Let c ∈ C, since we have assumed that g ◦ f is surjective, in particular C ⊆
Rng(g ◦ f) we have that c ∈ Rng(g ◦ f) thus by definition of range we can find
a a ∈ A such that g ◦ f(a) = c, that is g(f(a)) = c, and by definition of f we
have that f(a) ∈ B, hence we have that c ∈ Rng(g).
Since we have shown both Rng(g) ⊆ C and Rng(g) ⊇ C we can conclude that
Rng(g) = C, hence we have shown that g is surjective. ■

□
Definition 7.6.5 Injection. A function f : A → B is one-to-one, or is an
injection, means

whenever f(x) = f(y) then x = y.
We write this as

f : A ↪→ B,

or
f : A

1-1→ B.

♢
Example 7.6.6 A function that is injective just needs that no two inputs hit
the same output. Consider, again, the two sets

A = {1, 2, 3, 4}
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and
B = {a, b, c, d, e}

and consider this time the function f : A → B defined as

□
Example 7.6.7 Consider the function f : Z → Z defined for any a ∈ Z as

f(a) = a+ 5

Prove: f is an injective function.
Proof. We leave the task of proving that f is indeed a function to the reader,
and we prove that f is injective.
Let x ∈ Z and y ∈ Z such that f(x) = f(y) by definition of f this means
x+ 5 = y + 5, subtracting five on both sides of the equation gives us x = y as
desired. ■

□
Notice that the function from Example 7.6.3, p. 152 is not one-to-one since

6 = f(2, 0) = f(0, 3) yet (2, 0) ̸= (0, 3).

Example 7.6.8 Prove: If f : A → B is one-to-one and g : B → C is one-to-
one, then g ◦ f is one-to-one.
Proof. Assume f : A ↪→ B and g : B ↪→ C. Let x ∈ A and y ∈ A such that
g ◦ f(x) = g ◦ f(y).
By definition of function we can have that f(x) ∈ B f(y) ∈ B.
By assumption that g ◦ f(x) = g ◦ f(y), that is g(f(x)) = g(f(y)). By our
assumption that g is one-to-one, f(x) = f(y). Thus, by our assumption that f
is one-to-one, x = y. Hence f ◦ g is one-to-one ■

□
Proposition 7.6.9 f−1 is a function from Rng(f) to A if and only if f is
one-to-one.
Proof of Proposition 7.6.9. As we are to prove a biconditional we will split the
proof into two parts.
Proof of f is one-to-one =⇒ f−1 : Rng(f) → A
Assume f is one-to-one. We have defined the inverse of a relation in Defini-
tion 7.2.1, p. 128, so what we want to show is that f−1 is a function. To show a
relation is a function we need to show that it satisfies both conditions to being
a function.
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Proof of Condition (i):
This first condition Definition 7.5.1, p. 146 is the equality of sets, namely
Dom(f−1) = Rng(f) this was proven in Proposition 7.2.3, p. 129.
Proof of Condition (ii)
Let x ∈ B, y ∈ A and z ∈ A such that f−1(x) = y and f−1(x) = z. By
definition of inverse, f(y) = x and f(z) = x. Thus, by our assumption, y = z
as desired.
Proof of f−1 : Rng(f) → A =⇒ f is one-to-one
Let x ∈ A and y ∈ A such that f(x) = f(y). Name this element w = f(x) =
f(y). By definition of inverse, f−1(w) = x and f−1(w) = y. Thus, by our
assumption that f−1 is a function by condition (i) of being a function we have,
x = y as desired. ■

Now we have set up all the pieces we need to define a bijection.
Definition 7.6.10 Bijection. A function f : A → B is a one-to-one
correspondence, or a bijection means

f is one-to-one and onto B.
We write this as

f : A
∼→ B

♢
Example 7.6.11 A function that is bijective needs that no two inputs hit the
same output, as well as to reach every element of the codomain. Consider,
again, the two sets

A = {1, 2, 3, 4, 5}

and
B = {a, b, c, d, e}

and consider this time the function f : A → B defined as

□
Example 7.6.12 Consider the function g : Z → Z defined for any a ∈ Z as

g(a) = a− 2

Prove: g is a bijection.
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Proof. To show this function is a bijection we will need to show it is injective
and surjective.
Proof of one-to-one:
Let x and y be two arbitrary integers, such that g(x) = g(y) by definition of g
we have that g(x) = x− 2 and g(y) = y− 2 therefore x− 2 = y− 2, adding two
to both sides of the equations leaves us with x = y as desired.
Proof of onto:
To show our desired equality of sets we split into two parts.
Proof of Rng(g) ⊆ Z
Let b ∈ Rng(g), by definition of range we can find an integer a such that
g(a) = b by the definition of g we have that g(a) = a − 2, since both a and 2
are integers we have that a− 2 is an integer and hence b ∈ Z as desired.
Proof of Rng(g) ⊇ Z
Let m ∈ Z, note to show that we have membership of Rng(g) we need to
produce an integer so that g maps this new integer to m. This is an existential,
and the way we produce this element in unimportant to the proof. Notice that
since m and 2 are integers we have that m + 2 is an integer, and notice that
g(m + 2) = m + 2 − 2 = m and hence by definition of range we have that
m ∈ Rng(g) as desired.
Because we have shown that Rng(g) ⊆ Z and Rng(g) ⊇ Z we can conclude
that Rng(g) = Z, therefore we have that g is onto as desired.
Since we have shown that g is both one-to-one and onto we have that g is a
bijection. ■

□
Proposition 7.6.13 If f : A → B is a bijection, and g : B → C is a bijection,
then g ◦ f : A → C is a bijection.

Proof of Proposition 7.6.13. Assume f is a bijection from A to B and g is a
bijection from B to C.
[Proof of one-to-one]
Let x ∈ A and y ∈ A such that g ◦ f(x) = g ◦ f(y), hence g(f(x)) = g(f(y))
By our assumption g is a bijection, in particular one-to-one, this implies f(x) =
f(y). Since f is a bijection, in particular one-to-one, x = y, therefore g ◦ f is
one-to-one as desired.
[Proof of Onto]
Proof of Rng(g ◦ f) ⊆ C
Let y ∈ Rng(g ◦ f). By definition of range, y ∈ C. Thus, Rng(g ◦ f) ⊆ C.
Proof of Rng(g ◦ f) ⊇ C
Let y ∈ C. Thus by our assumption that g is a bijection, specifically surjective,
we can find w ∈ B such that g(w) = y, and since f is a bijection, specifically
surjective.
Thus by assumption that f is a bijection, specifically surjective, we can find
x ∈ A such that f(x) = w. Thus by definition of composition, g ◦ f(x) = y.
Hence, y ∈ Rng(g ◦ f). Thus C ⊂ Rng(g ◦ f).
Since we have shown that both Rng(g ◦ f) ⊆ C and Rng(g ◦ f) ⊇ C we can
conclude Rng(g ◦ f) = C so that we can conclude that g ◦ f is onto as desired.
Thus, g ◦ f : A → C is a bijection. ■

7.7 Exercises
1) Rng(R−1) = Dom(R)

2) IB ◦R−R and R ◦ IA = R
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3) (S ◦R)−1 = R−1 ◦ S−1

4) R is a reflexive relation on A if and only if IA ⊂ R.

5) R is symmetric if and only if R = R−1.

6) Suppose that R and S are equivalence relations on a set A. Prove that
R ∩ S is an equivalence relation on A.

7) Prove that if R is a symmetric, transitive relation on A, and the domain
of R is A, then R is reflexive on A.

8) Let R be a relation on the set A. Prove that R ∪R−1 is symmetric.

9) If f : A → B is onto B and g : B → C is onto C, then g ◦ f is onto C.

10) Let f : A → B and g : B → C. If g ◦f is one-to-one, then f is one-to-one.

11) Let F : A → B and G : B → A. If F is one-to-one and onto B, then
G = F 1 if and only if G ◦ F = IA or F ◦G = IB .

12) f(C ∪D)− f(C) ∪ f(D)

13) f−1(E ∪ F ) = f−1(E) ∪ f−1(F )

14) f−1(
⋃
β∈Γ

Eβ) =
⋃
β∈Γ

f−1(Eβ)

15) Prove that f(a, b) = 5a + 3b defines a surjective function from Z × Z to
Z but not injective.
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surjecction, 152

symmetric, 134

tautology, 12
transitive, 135
truth set, 18, 19
truth table, 9

union, 74
over a family, 95

unique existential quantifier, 22
universal quantifier, 20, 21
universe of discourse, 17

valid, 25, 26
Venn diagram, 76



Colophon
This book was authored in PreTeXt.


	Preface
	What is a Proof?
	In the Beginning We Had Shapes
	Undefined Terms
	Axioms
	Definitions
	Proofs
	Just Check a Bunch
	Obviously

	Introduction to Logic
	Propositions and Connectives
	Propositions and Negation
	Connectives and Compound Propositions
	Conditionals and Biconditionals
	Conditionals
	Biconditionals
	Truth Tables
	Basic Tables
	More Complicated Tables
	Tautologies and Contradictions
	Logical Equivalences
	What is an equivalence?
	Some Important Equivalences
	The Algebra of Logic
	Quantifiers
	The Universe of Discourse
	Common Universes
	Truth Sets and Predicate Forms
	The Existential Quantifier
	The Universal Quantifier
	Negating Quantifiers
	Unique Existence
	More Examples
	Exercises

	How to Argue
	Arguments
	Validness
	Arguments with Propositional Forms
	The Bad and the Ugly
	Arguments with Quantifiers
	Exercises

	Direct Proofs
	Where We Start
	What We Can Assume
	Our Terms
	Direct Proof
	What is a Direct Proof?
	Does it Work?
	Our First Proof
	redThe Beginning
	greenThe Muddle
	blueThe End
	More Direct Proof Examples
	Direct Proof Example 2
	redThe Beginning
	greenThe Muddle
	blueThe End
	Direct Proof Example 3
	redThe Beginning
	greenThe Muddle
	blueThe End
	Direct Proof Example 4
	redThe Beginning
	greenThe Muddle
	blueThe End
	Direct Proof Example 5
	redThe Beginning
	greenThe Muddle
	blueThe End
	Proofs with Conjunctions and Disjunctions
	More Examples
	Exercises

	Indirect Proofs
	Our Assumptions
	Contrapositive
	What is a Proof by Contraposition?
	First Example of Contrapositive
	redThe Beginning
	greenThe Muddle
	blueThe End
	Contradiction
	What is a contradiction?
	First Example of Proof by Contradiction
	redThe Beginning
	greenThe Muddle
	blueThe End
	2 is Irrational
	redThe Beginning
	greenThe Muddle
	blueThe End
	Biconditional Proofs
	Proof by Exhaustion
	What are Cases?
	Exhaustive Examples
	Existential Proofs
	Exercises

	Set Theory
	What is a Set?
	Set Builder Notation
	Comparing and Combining Sets
	Venn Diagrams and Logic of Sets
	Venn Diagrams
	The Logic of Sets
	First Proofs with Sets
	The First Proof
	redThe Beginning
	greenThe Muddle
	blueThe End
	More Examples
	Power Set
	First Proof
	Proof of: A B -3mu P(A) P(B)
	redThe Beginning
	greenThe Muddle
	blueThe End
	Proof of: P(A) P(B) -3mu A B
	redThe Beginning
	greenThe Muddle
	blueThe End
	The Natural Numbers
	Cross Product
	Families
	Exercises

	Principle of Mathematical Induction
	What We Will Use
	Summation
	Product
	Factorial
	Introduction to Induction
	First Proof with Induction
	redThe Beginning
	greenThe Muddle
	blueThe End
	Basic Induciton Examples
	The Fibonacci Sequence
	Well-Ordering Principle
	Exercises

	Relations
	What is a Relation?
	New Relations From Old
	Equivalence Relations
	Partitions
	Functions
	Bijections
	Exercises

	Back Matter
	Index


